scispace - formally typeset
Search or ask a question
Topic

Inertial reference unit

About: Inertial reference unit is a research topic. Over the lifetime, 1306 publications have been published within this topic receiving 22068 citations. The topic is also known as: IRU.


Papers
More filters
Proceedings ArticleDOI
01 Mar 2008
TL;DR: In this article, the FPGA-based digital electronics architecture and its implementation for the post resonator gyroscope (DRG) was described. But the performance of the DRG was below navigation grade.
Abstract: Inertial navigation systems based upon optical gyroscopes tend to be not long lived. Micro-electromechanical systems (MEMS) based gyros do not have these shortcomings; however, until recently, the performance of MEMS based gyros had been below navigation grade. Boeing and JPL have been cooperating since 1997 to develop high performance MEMS gyroscopes for miniature, low power space inertial reference unit applications. The efforts resulted in demonstration of a post resonator gyroscope (PRG). This experience led to the more compact disc resonator gyroscope (DRG) for further reduced size and power with potentially increased performance. Currently, the mass, volume and power of the DRG are dominated by the size of the electronics. This paper will detail the FPGA based digital electronics architecture and its implementation for the DRG which will allow reduction of size and power and will increase performance through a reduction in electronics noise. Using the digital control based on FPGA, we can program and modify in real-time the control loop to adapt to the specificity of each particular gyro and the change of the mechanical characteristic of the gyro during its life time.

21 citations

Patent
27 Mar 1978
TL;DR: In this paper, a processor for an inertial measurement unit which computes its angular velocity and translational acceleration in terms of dynamic variables chosen because they uniquely define the motion of the inertial measurements.
Abstract: A processor is provided for an inertial measurement unit which computes its angular velocity and translational acceleration in terms of dynamic variables chosen because they uniquely define the motion of the inertial measurement unit in terms of linear combinations of the outputs of the transducers used in the inertial measurement unit. In one embodiment, the processor includes a demodulator for obtaining d.c., in-phase and quadrature sets of signals from the outputs of the transducers, a combining circuit for deriving some of the dynamic variables from the in-phase and quadrature sets of signals, and a microprocessor for transforming the dynamic variables into angular velocity and translational acceleration vectors. The processor is used with a small rugged, precise inertial measurement unit in which vector components are measured by the use of accelerometers fixed in a spinning rotor, at least one of which is off-set from the rotor axis and has a sensitive axis parallel to that of the rotor. This off-set/parallel accelerometer permits obtaining the signs of the angular velocities in addition to their magnitudes such that complete vector components are obtained. In an alternative embodiment, two orthogonally oriented rotor systems are utilized which permits all a.c. signal processing, thereby eliminating the necessity of d.c. measurements. Error isolation and correction are easily accomplished in a specialized combining circuit which simplifies initial alignment of the instrument. Another alternative embodiment employs three rotors and provides complete redundancy.

21 citations

01 Jan 2014
TL;DR: In this article, the problem of estimating a human body's 6D pose using inertial sensors (accelerometers and gyroscopes) has been studied using probabilistic models.
Abstract: In this thesis, we consider the problem of estimating position and orientation (6D pose) using inertial sensors (accelerometers and gyroscopes). Inertial sensors provide information about the change in position and orientation at high sampling rates. However, they suffer from integration drift and hence need to be supplemented with additional sensors. To combine information from the inertial sensors with information from other sensors we use probabilistic models, both for sensor fusion and for sensor calibration.Inertial sensors can be supplemented with magnetometers, which are typically used to provide heading information. This relies on the assumption that the measured magnetic field is equal to a constant local magnetic field and that the magnetometer is properly calibrated. However, the presence of metallic objects in the vicinity of the sensor will make the first assumption invalid. If the metallic object is rigidly attached to the sensor, the magnetometer can be calibrated for the presence of this magnetic disturbance. Afterwards, the measurements can be used for heading estimation as if the disturbance was not present. We present a practical magnetometer calibration algorithm that is experimentally shown to lead to improved heading estimates. An alternative approach is to exploit the presence of magnetic disturbances in indoor environments by using them as a source of position information. We show that in the vicinity of a magnetic coil it is possible to obtain accurate position estimates using inertial sensors, magnetometers and knowledge of the magnetic field induced by the coil.We also consider the problem of estimating a human body’s 6D pose. For this, multiple inertial sensors are placed on the body. Information from the inertial sensors is combined using a biomechanical model which represents the human body as consisting of connected body segments. We solve this problem using an optimization-based approach and show that accurate 6D pose estimates are obtained. These estimates accurately represent the relative position and orientation of the human body, i.e. the shape of the body is accurately represented but the absolute position can not be determined.To estimate absolute position of the body, we consider the problem of indoor positioning using time of arrival measurements from an ultra-wideband (uwb) system in combination with inertial measurements. Our algorithm uses a tightlycoupled sensor fusion approach and is shown to lead to accurate position and orientation estimates. To be able to obtain position information from the uwb measurements, it is imperative that accurate estimates of the receivers’ positions and clock offsets are known. Hence, we also present an easy-to-use algorithm to calibrate the uwb system. It is based on a maximum likelihood formulation and represents the uwb measurements assuming a heavy-tailed asymmetric noise distribution to account for measurement outliers.

21 citations

Patent
21 Aug 1990
TL;DR: In this paper, an inertial stabilizing system for image stabilizing of hand-held optical instruments is presented, where an ultralight oscillogro (1-6) serves as a reference element by which the angular position in inertial space is detected.
Abstract: The present invention comprises an inertial stabilizing system to be used preferably in connection with image stabilizing of hand-held optical instruments. An ultralight oscillogyro (1-6) serves as a reference element by which the angular position in inertial space is detected. An electromechanical control system causes a gimbaled part (19) of the optics to assume essentially the same angular position in space assumed by the rotation plane of the rotor of the oscillogyro. The oscillogyro is modified for a widened angular range and the damping of the gyro is utilized for obtaining directly the possibility of target tracking.

21 citations

Journal ArticleDOI
TL;DR: In this paper, a comparison of the error propagation in a local level reference frame is derived for two inertial navigation systems; one has a local-level configuration, and the other has a space-stable configuration.
Abstract: A comparison of the error propagation in a local-level reference frame is derived for two inertial navigation systems; one has a local-level configuration, and the other has a space-stable configuration. The error propagation is shown to be equivalent for the two cases considered. This equivalence is demonstrated by starting with the error propagation equations for the space-stable system and transforming them to a local-level reference frame. The transformed equations are then compared with the classical local-level error equations, and the equivalence is noted. The specific implementation used in each case considers velocity damping but not altitude damping.

20 citations


Network Information
Related Topics (5)
Mobile robot
66.7K papers, 1.1M citations
78% related
Adaptive control
60.1K papers, 1.2M citations
73% related
Robot
103.8K papers, 1.3M citations
73% related
Control theory
299.6K papers, 3.1M citations
73% related
Control system
129K papers, 1.5M citations
72% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202314
202221
20211
20202
20193
20189