scispace - formally typeset
Search or ask a question
Topic

Inertial wave

About: Inertial wave is a research topic. Over the lifetime, 1710 publications have been published within this topic receiving 40906 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a simple model of forcing by a wind stress was used to estimate the phase, amplitude and intermittency of bursts of inertial oscillations in the mixed layer.

464 citations

Journal ArticleDOI
TL;DR: In this article, the authors study the linearized response of a slowly and possibly differentially rotating planet to low-frequency tidal forcing and provide analytical and numerical evidence that the frequency-averaged dissipation rate may be asymptotically independent of the viscosity in the limit of small Ekman number.
Abstract: Many extrasolar planets orbit sufficiently close to their host stars that significant tidal interactions can be expected, resulting in an evolution of the spin and orbital properties of the planets. The accompanying dissipation of energy can also be an important source of heat, leading to the inflation of short-period planets and even mass loss through Roche lobe overflow. Tides may therefore play an important role in determining the observed distributions of mass, orbital period, and eccentricity of the extrasolar planets. In addition, tidal interactions between gaseous giant planets in the solar system and their moons are thought to be responsible for the orbital migration of the satellites, leading to their capture into resonant configurations. Traditionally, the efficiency of tidal dissipation is simply parameterized by a quality factor Q, which depends, in principle, in an unknown way on the frequency and amplitude of the tidal forcing. In this paper we treat the underlying fluid dynamical problem with the aim of determining the efficiency of tidal dissipation in gaseous giant planets such as Jupiter, Saturn, or the short-period extrasolar planets. Efficient convection enforces a nearly adiabatic stratification in these bodies, which may or may not contain solid cores. With some modifications, our approach can also be applied to low-mass stars with extended convective envelopes. In cases of interest, the tidal forcing frequencies are typically comparable to the spin frequency of the planet but are small compared to its dynamical frequency. We therefore study the linearized response of a slowly and possibly differentially rotating planet to low-frequency tidal forcing. Convective regions of the planet support inertial waves, which possess a dense or continuous frequency spectrum in the absence of viscosity, while any radiative regions support generalized Hough waves. We formulate the relevant equations for studying the excitation of these disturbances and present a set of illustrative numerical calculations of the tidal dissipation rate. We argue that inertial waves provide a natural avenue for efficient tidal dissipation in most cases of interest. In the presence of a solid core, the excited disturbance tends to be localized on a web of rays rather than resembling a smooth eigenfunction. The resulting value of Q depends, in principle, in a highly erratic way on the forcing frequency, but we provide analytical and numerical evidence that the frequency-averaged dissipation rate may be asymptotically independent of the viscosity in the limit of small Ekman number. For a smaller viscosity, the tidal disturbance has a finer spatial structure and individual resonances are more pronounced. In short-period extrasolar planets, tidal dissipation via inertial waves becomes somewhat less efficient once they are spun down to a synchronous state. However, if the stellar irradiation of the planet leads to the formation of a radiative outer layer that supports generalized Hough modes, the tidal dissipation rate can be enhanced, albeit with significant uncertainty, through the excitation and damping of these waves. The dissipative mechanisms that we describe offer a promising explanation of the historical evolution and current state of the Galilean satellites, as well as the observed circularization of the orbits of short-period extrasolar planets.

413 citations

Journal ArticleDOI
TL;DR: In this paper, the authors calculate the excitation and dissipation of low-frequency tidal oscillations in uniformly rotating solar-type stars and calculate the associated dissipation rate under the assumption that they do not reflect coherently from the center of the star.
Abstract: We calculate the excitation and dissipation of low-frequency tidal oscillations in uniformly rotating solar-type stars. For tidal frequencies smaller than twice the spin frequency, inertial waves are excited in the convective envelope and are dissipated by turbulent viscosity. Enhanced dissipation occurs over the entire frequency range rather than in a series of very narrow resonant peaks and is relatively insensitive to the effective viscosity. Hough waves are excited at the base of the convective zone and propagate into the radiative interior. We calculate the associated dissipation rate under the assumption that they do not reflect coherently from the center of the star. Tidal dissipation in a model based on the present Sun is significantly enhanced through the inclusion of the Coriolis force but may still fall short of that required to explain the circularization of close binary stars. However, the dependence of the results on the spin frequency, tidal frequency, and stellar model indicate that a more detailed evolutionary study including inertial and Hough waves is required. We also discuss the case of higher tidal frequencies appropriate to stars with very close planetary companions. The survival of even the closest hot Jupiters can be plausibly explained provided that the Hough waves they generate are not damped at the center of the star. We argue that this is the case because the tide excited by a hot Jupiter in the present Sun would marginally fail to achieve nonlinearity. As conditions at the center of the star evolve, nonlinearity may set in at a critical age, resulting in a relatively rapid inspiral of the hot Jupiter.

338 citations

Journal ArticleDOI
TL;DR: In this paper, the nonisotropic effects of solid-body rotation on homogeneous turbulence are investigated in a specific eddy damped quasi-normal Markovian model, which includes the inertial waves regime in the evaluation of triple correlations.
Abstract: The non-isotropic effects of solid-body rotation on homogeneous turbulence are investigated in this paper. A spectral formalism using eigenmodes introduces the spectral Coriolis effects more easily and leads to simpler expressions for the integral quadratic terms which come mostly from classical two-point closures. The analysis is then applied to a specific eddy damped quasi-normal Markovian model, which includes the inertial waves regime in the evaluation of triple correlations. This procedure allows for a departure from isotropy by external rotation effects. When started with rigorously isotropic initial data, the various trends observed on the Reynolds stresses and the integral lengthscales remain in accordance with the results from direct simulations; moreover they reflect a very specific spectral angular distribution. Such an angular dependence allows a drain of spectral energy from the parallel to the normal wave vectors (with respect to the rotation axis), and thus appears consistent with a trend toward two-dimensionality.

319 citations

Journal ArticleDOI
TL;DR: In this article, the bifurcation, stability, and evolution of gravity and capillary-gravity waves are discussed. And the importance of surface tension effects on steep waves is studied.
Abstract: This review deals primarily with the bifurcation, stability, and evolution of gravity and capillary-gravity waves. Recent results on the bifurcation of various types of capillary-gravity waves, including two-dimensional solitary waves at the minimum of the dispersion curve, are reviewed. A survey of various mechanisms (including the most recent ones) to explain the frequency downshift phenomenon is provided. Recent significant results are given on “horseshoe” patterns, which are three-dimensional structures observable on the sea surface under the action of wind or in wave tank experiments. The so-called short-crested waves are then discussed. Finally, the importance of surface tension effects on steep waves is studied.

306 citations


Network Information
Related Topics (5)
Convection
39.6K papers, 916.8K citations
86% related
Boundary layer
64.9K papers, 1.4M citations
85% related
Turbulence
112.1K papers, 2.7M citations
84% related
Vortex
72.3K papers, 1.3M citations
80% related
Reynolds number
68.4K papers, 1.6M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202328
202253
202150
202063
201955
201848