scispace - formally typeset
Search or ask a question

Showing papers on "Influenza A virus published in 2005"


Journal ArticleDOI
08 Sep 2005-Nature
TL;DR: A simulation model of influenza transmission in Southeast Asia is used and it is shown that elimination of a nascent pandemic may be feasible using a combination of geographically targeted prophylaxis and social distancing measures, if the basic reproduction number of the new virus is below 1.8.
Abstract: Highly pathogenic H5N1 influenza A viruses are now endemic in avian populations in Southeast Asia, and human cases continue to accumulate. Although currently incapable of sustained human-to-human transmission, H5N1 represents a serious pandemic threat owing to the risk of a mutation or reassortment generating a virus with increased transmissibility. Identifying public health interventions that might be able to halt a pandemic in its earliest stages is therefore a priority. Here we use a simulation model of influenza transmission in Southeast Asia to evaluate the potential effectiveness of targeted mass prophylactic use of antiviral drugs as a containment strategy. Other interventions aimed at reducing population contact rates are also examined as reinforcements to an antiviral-based containment policy. We show that elimination of a nascent pandemic may be feasible using a combination of geographically targeted prophylaxis and social distancing measures, if the basic reproduction number of the new virus is below 1.8. We predict that a stockpile of 3 million courses of antiviral drugs should be sufficient for elimination. Policy effectiveness depends critically on how quickly clinical cases are diagnosed and the speed with which antiviral drugs can be distributed.

1,862 citations


Journal ArticleDOI
TL;DR: In this article, the authors evaluated all respiratory illnesses in prospective cohorts of healthy elderly patients (> or =65 years of age) and high-risk adults (those with chronic heart or lung disease) and in patients hospitalized with acute cardiopulmonary conditions.
Abstract: Background Respiratory syncytial virus (RSV) is an increasingly recognized cause of illness in adults. Data on the epidemiology and clinical effects in community-dwelling elderly persons and high-risk adults can help in assessing the need for vaccine development. Methods During four consecutive winters, we evaluated all respiratory illnesses in prospective cohorts of healthy elderly patients (> or =65 years of age) and high-risk adults (those with chronic heart or lung disease) and in patients hospitalized with acute cardiopulmonary conditions. RSV infection and influenza A were diagnosed on the basis of culture, reverse-transcriptase polymerase chain reaction, and serologic studies. Results A total of 608 healthy elderly patients and 540 high-risk adults were enrolled in prospective surveillance, and 1388 hospitalized patients were enrolled. A total of 2514 illnesses were evaluated. RSV infection was identified in 102 patients in the prospective cohorts and 142 hospitalized patients, and influenza A was diagnosed in 44 patients in the prospective cohorts and 154 hospitalized patients. RSV infection developed annually in 3 to 7 percent of healthy elderly patients and in 4 to 10 percent of high-risk adults. Among healthy elderly patients, RSV infection generated fewer office visits than influenza; however, the use of health care services by high-risk adults was similar in the two groups. In the hospitalized cohort, RSV infection and influenza A resulted in similar lengths of stay, rates of use of intensive care (15 percent and 12 percent, respectively), and mortality (8 percent and 7 percent, respectively). On the basis of the diagnostic codes of the International Classification of Diseases, 9th Revision, Clinical Modification at discharge, RSV infection accounted for 10.6 percent of hospitalizations for pneumonia, 11.4 percent for chronic obstructive pulmonary disease, 5.4 percent for congestive heart failure, and 7.2 percent for asthma. Conclusions RSV infection is an important illness in elderly and high-risk adults, with a disease burden similar to that of nonpandemic influenza A in a population in which the prevalence of vaccination for influenza is high. An effective RSV vaccine may offer benefits for these adults.

1,653 citations


Journal ArticleDOI
TL;DR: A previously unidentified antigenic subtype of HA (H16), detected in viruses circulating in black-headed gulls in Sweden, is described and proposed that sequence analyses of HA and NA genes of influenza A viruses be used for the rapid identification of existing and novel HA andNA subtypes.
Abstract: In wild aquatic birds and poultry around the world, influenza A viruses carrying 15 antigenic subtypes of hemagglutinin (HA) and 9 antigenic subtypes of neuraminidase (NA) have been described. Here we describe a previously unidentified antigenic subtype of HA (H16), detected in viruses circulating in black-headed gulls in Sweden. In agreement with established criteria for the definition of antigenic subtypes, hemagglutination inhibition assays and immunodiffusion assays failed to detect specific reactivity between H16 and the previously described subtypes H1 to H15. Genetically, H16 HA was found to be distantly related to H13 HA, a subtype also detected exclusively in shorebirds, and the amino acid composition of the putative receptor-binding site of H13 and H16 HAs was found to be distinct from that in HA subtypes circulating in ducks and geese. The H16 viruses contained NA genes that were similar to those of other Eurasian shorebirds but genetically distinct from N3 genes detected in other birds and geographical locations. The European gull viruses were further distinguishable from other influenza A viruses based on their PB2, NP, and NS genes. Gaining information on the full spectrum of avian influenza A viruses and creating reagents for their detection and identification will remain an important task for influenza surveillance, outbreak control, and animal and public health. We propose that sequence analyses of HA and NA genes of influenza A viruses be used for the rapid identification of existing and novel HA and NA subtypes.

1,579 citations


Journal ArticleDOI
TL;DR: The writing committee consisted of the following: John H. Beigel, M.D., National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md, and Jeremy Farrar, D.Phil., Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam.
Abstract: The writing committee consisted of the following: John H. Beigel, M.D., National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.; Jeremy Farrar, D.Phil., Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam; Aye Maung Han, M.B., B.S., Department of Child Health, Institute of Medicine, Yangon, Myanmar; Frederick G. Hayden, M.D. (rapporteur), University of Virginia, Charlottesville; Randy Hyer, M.D., World Health Organization, Geneva; Menno D. de Jong, M.D., Ph.D., Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam; Sorasak Lochindarat, M.D., Queen Sirikit National Institute of Child Health, Bangkok, Thailand; Nguyen Thi Kim Tien, M.D., Ph.D., Pasteur Institute, Ho Chi Minh City, Vietnam; Nguyen Tran Hien, M.D., Ph.D., National Institute of Hygiene and Epidemiology, Hanoi; Tran Tinh Hien, M.D., Ph.D., Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam; Angus Nicoll, M.Sc., Health Protection Agency, London; Sok Touch, M.D., Ministry of Health, Phnom Penh, Cambodia; and Kwok-Yung Yuen, M.D., University of Hong Kong, Hong Kong SAR, China. Address reprint requests to Dr. Hayden at the Department of Internal Medicine, P.O. Box 800473, University of Virginia Health Sciences Center, Charlottesville, VA 22908, or at fgh@virginia.edu.

1,224 citations


Journal ArticleDOI
07 Oct 2005-Science
TL;DR: Reverse genetics was used to generate an influenza virus bearing all eight gene segments of the pandemic virus to study the properties associated with its extraordinary virulence, and confirmed that the coordinated expression of the 1918 virus genes most certainly confers the unique high-virulence phenotype observed with this pandemicirus.
Abstract: The pandemic influenza virus of 1918-1919 killed an estimated 20 to 50 million people worldwide. With the recent availability of the complete 1918 influenza virus coding sequence, we used reverse genetics to generate an influenza virus bearing all eight gene segments of the pandemic virus to study the properties associated with its extraordinary virulence. In stark contrast to contemporary human influenza H1N1 viruses, the 1918 pandemic virus had the ability to replicate in the absence of trypsin, caused death in mice and embryonated chicken eggs, and displayed a high-growth phenotype in human bronchial epithelial cells. Moreover, the coordinated expression of the 1918 virus genes most certainly confers the unique high-virulence phenotype observed with this pandemic virus.

1,202 citations


Journal ArticleDOI
Anne Moscona1
TL;DR: The potential for the development of resistance especially limits the use of the adamantanes for the treatment of influenza, although the drugs still have a place in planning for prophylaxis during an epidemic.
Abstract: he impact of influenza infection is felt globally each year when the disease develops in approximately 20 percent of the world’s population. In the United States, influenza infections occur in epidemics each winter, generally between late December and early March. Recent events, including human cases of avian influenza, have heightened awareness of the threat of a pandemic and have spurred efforts to develop plans for its control. Although vaccination is the primary strategy for the prevention of influenza, there are a number of likely scenarios for which vaccination is inadequate and effective antiviral agents would be of the utmost importance. During any influenza season, antigenic drift in the virus may occur after formulation of the year’s vaccine has taken place, rendering the vaccine less protective, and outbreaks can more easily occur among highrisk populations. In the course of a pandemic, vaccine supplies would be inadequate. Vaccine production by current methods cannot be carried out with the speed required to halt the progress of a new strain of influenza virus; therefore, it is likely that vaccine would not be available for the first wave of spread of virus. 1 Antiviral agents thus form an important part of a rational approach to epidemic influenza and are critical to planning for a pandemic. Four drugs are currently available for the treatment or prophylaxis of influenza infections: the adamantanes (amantadine and rimantadine) and the newer class of neuraminidase inhibitors (zanamivir [Relenza] and oseltamivir [Tamiflu]). The adamantanes interfere with viral uncoating inside the cell. They are effective only against influenza A and are associated with several toxic effects and with rapid emergence of drug-resistant variants. Adamantane-resistant isolates of influenza A are genetically stable, can be transmitted to susceptible contacts, are as pathogenic as wild-type virus isolates, and can be shed for prolonged periods in immunocompromised patients taking the drug. This potential for the development of resistance especially limits the use of the adamantanes for the treatment of influenza, although the drugs still have a place in planning for prophylaxis during an epidemic. The neuraminidase inhibitors zanamivir and oseltamivir interfere with the release of progeny influenza virus from infected host cells, a process that prevents infection of new host cells and thereby halts the spread of infection in the respiratory tract (Fig. 1). Since replication of influenza virus in the respiratory tract reaches its peak between 24 and 72 hours after the onset of the illness, drugs such as the neuraminidase inhibitors that act at the stage of viral replication must be administered as early as possible. In contrast to the adamantanes, the neuraminidase inhibitors are associated with very little toxicity and are far less likely to promote the development of drug-resistant influenza. As a class, the neuraminidase inhibitors are effective against all neuraminidase subtypes t

1,031 citations


Journal ArticleDOI
06 Oct 2005-Nature
TL;DR: In this article, the authors present sequence and phylogenetic analyses of the complete genome of the 1918 influenza virus and propose that the 1918 virus was not a reassortant virus (like those of the 1957 and 1968 pandemics), but more likely an entirely avian-like virus that adapted to humans.
Abstract: The influenza A viral heterotrimeric polymerase complex (PA, PB1, PB2) is known to be involved in many aspects of viral replication and to interact with host factors, thereby having a role in host specificity. The polymerase protein sequences from the 1918 human influenza virus differ from avian consensus sequences at only a small number of amino acids, consistent with the hypothesis that they were derived from an avian source shortly before the pandemic. However, when compared to avian sequences, the nucleotide sequences of the 1918 polymerase genes have more synonymous differences than expected, suggesting evolutionary distance from known avian strains. Here we present sequence and phylogenetic analyses of the complete genome of the 1918 influenza virus, and propose that the 1918 virus was not a reassortant virus (like those of the 1957 and 1968 pandemics), but more likely an entirely avian-like virus that adapted to humans. These data support prior phylogenetic studies suggesting that the 1918 virus was derived from an avian source. A total of ten amino acid changes in the polymerase proteins consistently differentiate the 1918 and subsequent human influenza virus sequences from avian virus sequences. Notably, a number of the same changes have been found in recently circulating, highly pathogenic H5N1 viruses that have caused illness and death in humans and are feared to be the precursors of a new influenza pandemic. The sequence changes identified here may be important in the adaptation of influenza viruses to humans.

992 citations


Journal ArticleDOI
TL;DR: It is suggested that resistance can emerge during the currently recommended regimen of oseltamivir therapy and may be associated with clinical deterioration and that the strategy for the treatment of influenza A (H5N1) virus infection should include additional antiviral agents.
Abstract: Influenza A (H5N1) virus with an amino acid substitution in neuraminidase conferring high-level resistance to oseltamivir was isolated from two of eight Vietnamese patients during oseltamivir treatment. Both patients died of influenza A (H5N1) virus infection, despite early initiation of treatment in one patient. Surviving patients had rapid declines in the viral load to undetectable levels during treatment. These observations suggest that resistance can emerge during the currently recommended regimen of oseltamivir therapy and may be associated with clinical deterioration and that the strategy for the treatment of influenza A (H5N1) virus infection should include additional antiviral agents.

890 citations


Journal ArticleDOI
19 Aug 2005-Science
TL;DR: An outbreak among migratory birds on Lake Qinghaihu, China, in May and June 2005, in which more than a thousand birds were affected, revealed four H5N1 AIV strains to be reassortants related to a peregrine falcon isolate from Hong Kong and to have known highly pathogenic characteristics.
Abstract: H5N1 avian influenza virus (AIV) has emerged as a pathogenic entity for a variety of species, including humans, in recent years. Here we report an outbreak among migratory birds on Lake Qinghaihu, China, in May and June 2005, in which more than a thousand birds were affected. Pancreatic necrosis and abnormal neurological symptoms were the major clinical features. Sequencing of the complete genomes of four H5N1 AIV strains revealed them to be reassortants related to a peregrine falcon isolate from Hong Kong and to have known highly pathogenic characteristics. Experimental animal infections reproduced typical highly pathogenic AIV infection symptoms and pathology.

737 citations


Journal ArticleDOI
20 Oct 2005-Nature
TL;DR: The isolation of an H5N1 virus from a Vietnamese girl that is resistant to the drug oseltamivir, which is an inhibitor of the viral enzyme neuraminidase and is currently used for protection against and treatment of influenza is reported.
Abstract: The persistence of H5N1 avian influenza viruses in many Asian countries and their ability to cause fatal infections in humans have raised serious concerns about a global flu pandemic. Here we report the isolation of an H5N1 virus from a Vietnamese girl that is resistant to the drug oseltamivir, which is an inhibitor of the viral enzyme neuraminidase and is currently used for protection against and treatment of influenza. Further investigation is necessary to determine the prevalence of oseltamivir-resistant H5N1 viruses among patients treated with this drug.

730 citations


Journal ArticleDOI
TL;DR: The authors' data raise concerns about the appropriate use of adamantanes and draw attention to the importance of tracking the emergence and spread of drug-resistant influenza A viruses.

Journal ArticleDOI
TL;DR: It is demonstrated that TLR3 contributes directly to the immune response of respiratory epithelial cells to influenza A virus and dsRNA, and a molecular mechanism by which these stimuli induce epithelial cell activation is proposed.

Journal ArticleDOI
TL;DR: Specific mutations in SC35M polymerase considerably increase its activity in mammalian cells, correlating with high virulence in mice, demonstrating convergent evolution in nature and may be a prerequisite for adaptation to a new host paving the way for new pandemic viruses.
Abstract: Mammalian influenza viruses are descendants of avian strains that crossed the species barrier and underwent further adaptation. Since 1997 in southeast Asia, H5N1 highly pathogenic avian influenza viruses have been causing severe, even fatal disease in humans. Although no lineages of this subtype have been established until now, such repeated events may initiate a new pandemic. As a model of species transmission, we used the highly pathogenic avian influenza virus SC35 (H7N7), which is low-pathogenic for mice, and its lethal mouse-adapted descendant SC35M. Specific mutations in SC35M polymerase considerably increase its activity in mammalian cells, correlating with high virulence in mice. Some of these mutations are prevalent in chicken and mammalian isolates, especially in the highly pathogenic H5N1 viruses from southeast Asia. These activity-enhancing mutations of the viral polymerase complex demonstrate convergent evolution in nature and, therefore, may be a prerequisite for adaptation to a new host paving the way for new pandemic viruses.

Journal ArticleDOI
21 Oct 2005-Science
TL;DR: The geographic expansion of the infection and its persistence for several years indicate efficient transmission of canine influenza virus among greyhounds, and evidence of infection in pet dogs suggests that this infection may also become enzootic in this population.
Abstract: Molecular and antigenic analyses of three influenza viruses isolated from outbreaks of severe respiratory disease in racing greyhounds revealed that they are closely related to H3N8 equine influenza virus. Phylogenetic analysis indicated that the canine influenza virus genomes form a monophyletic group, consistent with a single interspecies virus transfer. Molecular changes in the hemagglutinin suggested adaptive evolution in the new host. The etiologic role of this virus in respiratory disease was supported by the temporal association of rising antibody titers with disease and by experimental inoculation studies. The geographic expansion of the infection and its persistence for several years indicate efficient transmission of canine influenza virus among greyhounds. Evidence of infection in pet dogs suggests that this infection may also become enzootic in this population.

Journal ArticleDOI
TL;DR: A substantial number of influenza-associated deaths occurred among U.S. children during the 2003-2004 influenza season, and high priority should be given to improvements in influenza-vaccine coverage and improvements in the diagnosis and treatment of influenza to reduce childhood mortality from influenza.
Abstract: BACKGROUND Although influenza is common among children, pediatric mortality related to laboratory-confirmed influenza has not been assessed nationally. METHODS During the 2003-2004 influenza season, we requested that state health departments report any death associated with laboratory-confirmed influenza in a U.S. resident younger than 18 years of age. Case reports, medical records, and autopsy reports were reviewed, and available influenza-virus isolates were analyzed at the Centers for Disease Control and Prevention. RESULTS One hundred fifty-three influenza-associated deaths among children were reported by 40 state health departments. The median age of the children was three years, and 96 of them (63 percent) were younger than five years old. Forty-seven of the children (31 percent) died outside a hospital setting, and 45 (29 percent) died within three days after the onset of illness. Bacterial coinfections were identified in 24 of the 102 children tested (24 percent). Thirty-three percent of the children had an underlying condition recognized to increase the risk of influenza-related complications, and 20 percent had other chronic conditions; 47 percent had previously been healthy. Chronic neurologic or neuromuscular conditions were present in one third. The mortality rate was highest among children younger than six months of age (0.88 per 100,000 children; 95 percent confidence interval, 0.52 to 1.39 per 100,000). CONCLUSIONS A substantial number of influenza-associated deaths occurred among U.S. children during the 2003-2004 influenza season. High priority should be given to improvements in influenza-vaccine coverage and improvements in the diagnosis and treatment of influenza to reduce childhood mortality from influenza.

Journal ArticleDOI
TL;DR: The results, along with the HA type-specific effect, suggest that the antiviral effect of catechins on influenza virus is mediated not only by specific interaction with HA, but altering the physical properties of viral membrane.

Journal ArticleDOI
TL;DR: The findings of this study show that the human H9N2 influenza virus, A/Hong Kong/2108/03, is of purely avian origin and is closely related to some viruses circulating in poultry in the markets of Hong Kong.
Abstract: Avian H9N2 influenza A virus has caused repeated human infections in Asia since 1998. Here we report that an H9N2 influenza virus infected a 5-year-old child in Hong Kong in 2003. To identify the possible source of the infection, the human isolate and other H9N2 influenza viruses isolated from Hong Kong poultry markets from January to October 2003 were genetically and antigenically characterized. The findings of this study show that the human H9N2 influenza virus, A/Hong Kong/2108/03, is of purely avian origin and is closely related to some viruses circulating in poultry in the markets of Hong Kong. The continued presence of H9N2 influenza viruses in poultry markets in southern China increases the likelihood of avian-to-human interspecies transmission.

Journal ArticleDOI
TL;DR: The decline in influenza-related mortality among people aged 65 to 74 years in the decade after the 1968 pandemic is attributed to the acquisition of immunity to the emerging A(H3N2) virus, and observational studies substantially overestimate vaccination benefit.
Abstract: Background Observational studies report that influenza vaccination reduces winter mortality risk from any cause by 50% among the elderly. Influenza vaccination coverage among elderly persons (≥65 years) in the United States increased from between 15% and 20% before 1980 to 65% in 2001. Unexpectedly, estimates of influenza-related mortality in this age group also increased during this period. We tried to reconcile these conflicting findings by adjusting excess mortality estimates for aging and increased circulation of influenza A(H3N2) viruses. Methods We used a cyclical regression model to generate seasonal estimates of national influenza-related mortality (excess mortality) among the elderly in both pneumonia and influenza and all-cause deaths for the 33 seasons from 1968 to 2001. We stratified the data by 5-year age group and separated seasons dominated by A(H3N2) viruses from other seasons. Results For people aged 65 to 74 years, excess mortality rates in A(H3N2)-dominated seasons fell between 1968 and the early 1980s but remained approximately constant thereafter. For persons 85 years or older, the mortality rate remained flat throughout. Excess mortality in A(H1N1) and B seasons did not change. All-cause excess mortality for persons 65 years or older never exceeded 10% of all winter deaths. Conclusions We attribute the decline in influenza-related mortality among people aged 65 to 74 years in the decade after the 1968 pandemic to the acquisition of immunity to the emerging A(H3N2) virus. We could not correlate increasing vaccination coverage after 1980 with declining mortality rates in any age group. Because fewer than 10% of all winter deaths were attributable to influenza in any season, we conclude that observational studies substantially overestimate vaccination benefit.

Journal ArticleDOI
TL;DR: The H5n1/97 and H5N1/04 subtype influenza A viruses are more potent inducers of proinflammatory cytokines and chemokines in primary human respiratory epithelial cells than subtype H1N1 virus, and it is suggested that this hyper-induction of cytokines may be relevant to the pathogenesis of human H4N1 disease.
Abstract: Fatal human respiratory disease associated with influenza A subtype H5N1 has been documented in Hong Kong, and more recently in Vietnam, Thailand and Cambodia. We previously demonstrated that patients with H5N1 disease had unusually high serum levels of IP-10 (interferon-gamma-inducible protein-10). Furthermore, when compared with human influenza virus subtype H1N1, the H5N1 viruses in 1997 (A/Hong Kong/483/97) (H5N1/97) were more potent inducers of pro-inflammatory cytokines (e.g. tumor necrosis factor-a) and chemokines (e.g. IP-10) from primary human macrophages in vitro, which suggests that cytokines dysregulation may play a role in pathogenesis of H5N1 disease. Since respiratory epithelial cells are the primary target cell for replication of influenza viruses, it is pertinent to investigate the cytokine induction profile of H5N1 viruses in these cells. We used quantitative RT-PCR and ELISA to compare the profile of cytokine and chemokine gene expression induced by H5N1 viruses A/HK/483/97 (H5N1/97), A/Vietnam/1194/04 and A/Vietnam/3046/04 (both H5N1/04) with that of human H1N1 virus in human primary alveolar and bronchial epithelial cells in vitro. We demonstrated that in comparison to human H1N1 viruses, H5N1/97 and H5N1/04 viruses were more potent inducers of IP-10, interferon beta, RANTES (regulated on activation, normal T cell expressed and secreted) and interleukin 6 (IL-6) in primary human alveolar and bronchial epithelial cells in vitro. Recent H5N1 viruses from Vietnam (H5N1/04) appeared to be even more potent at inducing IP-10 than H5N1/97 virus. The H5N1/97 and H5N1/04 subtype influenza A viruses are more potent inducers of proinflammatory cytokines and chemokines in primary human respiratory epithelial cells than subtype H1N1 virus. We suggest that this hyper-induction of cytokines may be relevant to the pathogenesis of human H5N1 disease.

Journal ArticleDOI
TL;DR: In southern Vietnam, a four-year-old boy presented with severe diarrhea, followed by seizures, coma, and death, and the clinical diagnosis was acute encephalitis, suggesting that the spectrum of influenza H5N1 is wider than previously thought.
Abstract: In southern Vietnam, a four-year-old boy presented with severe diarrhea, followed by seizures, coma, and death. The cerebrospinal fluid contained 1 white cell per cubic millimeter, normal glucose levels, and increased levels of protein (0.81 g per liter). The diagnosis of avian influenza A (H5N1) was established by isolation of the virus from cerebrospinal fluid, fecal, throat, and serum specimens. The patient's nine-year-old sister had died from a similar syndrome two weeks earlier. In both siblings, the clinical diagnosis was acute encephalitis. Neither patient had respiratory symptoms at presentation. These cases suggest that the spectrum of influenza H5N1 is wider than previously thought.

Journal ArticleDOI
TL;DR: Eight virus isolates that were nonpathogenic in ducks replicated and transmitted efficiently to naïve contacts, suggesting that highly pathogenic H5N1 viruses causing minimal signs of disease in ducks can propagate silently and efficiently among domestic and wild ducks in Asia and that they represent a serious threat to human and veterinary public health.
Abstract: Wild waterfowl are the natural reservoir of all influenza A viruses, and these viruses are usually nonpathogenic in these birds. However, since late 2002, H5N1 outbreaks in Asia have resulted in mortality among waterfowl in recreational parks, domestic flocks, and wild migratory birds. The evolutionary stasis between influenza virus and its natural host may have been disrupted, prompting us to ask whether waterfowl are resistant to H5N1 influenza virus disease and whether they can still act as a reservoir for these viruses. To better understand the biology of H5N1 viruses in ducks and attempt to answer this question, we inoculated juvenile mallards with 23 different H5N1 influenza viruses isolated in Asia between 2003 and 2004. All virus isolates replicated efficiently in inoculated ducks, and 22 were transmitted to susceptible contacts. Viruses replicated to higher levels in the trachea than in the cloaca of both inoculated and contact birds, suggesting that the digestive tract is not the main site of H5N1 influenza virus replication in ducks and that the fecal-oral route may no longer be the main transmission path. The virus isolates' pathogenicities varied from completely nonpathogenic to highly lethal and were positively correlated with tracheal virus titers. Nevertheless, the eight virus isolates that were nonpathogenic in ducks replicated and transmitted efficiently to naive contacts, suggesting that highly pathogenic H5N1 viruses causing minimal signs of disease in ducks can propagate silently and efficiently among domestic and wild ducks in Asia and that they represent a serious threat to human and veterinary public health.

Journal ArticleDOI
TL;DR: The results demonstrate the general equivalence of mouse and ferret models for assessment of the virulence of 2003 and 2004 H5N1 viruses, however, the apparent enhancement ofvirulence of these viruses in humans in 2004 was better reflected in the ferret.
Abstract: The spread of highly pathogenic avian influenza H5N1 viruses across Asia in 2003 and 2004 devastated domestic poultry populations and resulted in the largest and most lethal H5N1 virus outbreak in humans to date. To better understand the potential of H5N1 viruses isolated during this epizootic event to cause disease in mammals, we used the mouse and ferret models to evaluate the relative virulence of selected 2003 and 2004 H5N1 viruses representing multiple genetic and geographical groups and compared them to earlier H5N1 strains isolated from humans. Four of five human isolates tested were highly lethal for both mice and ferrets and exhibited a substantially greater level of virulence in ferrets than other H5N1 viruses isolated from humans since 1997. One human isolate and all four avian isolates tested were found to be of low virulence in either animal. The highly virulent viruses replicated to high titers in the mouse and ferret respiratory tracts and spread to multiple organs, including the brain. Rapid disease progression and high lethality rates in ferrets distinguished the highly virulent 2004 H5N1 viruses from the 1997 H5N1 viruses. A pair of viruses isolated from the same patient differed by eight amino acids, including a Lys/Glu disparity at 627 of PB2, previously identified as an H5N1 virulence factor in mice. The virus possessing Glu at 627 of PB2 exhibited only a modest decrease in virulence in mice and was highly virulent in ferrets, indicating that for this virus pair, the K627E PB2 difference did not have a prevailing effect on virulence in mice or ferrets. Our results demonstrate the general equivalence of mouse and ferret models for assessment of the virulence of 2003 and 2004 H5N1 viruses. However, the apparent enhancement of virulence of these viruses in humans in 2004 was better reflected in the ferret.

Journal ArticleDOI
20 Oct 2005-Nature
TL;DR: A new, large-scale sequencing effort to provide a more comprehensive picture of the evolution of influenza viruses and of their pattern of transmission through human and animal populations is reported, encompassing a total of 2,821,103 nucleotides.
Abstract: Influenza viruses are remarkably adept at surviving in the human population over a long timescale. The human influenza A virus continues to thrive even among populations with widespread access to vaccines, and continues to be a major cause of morbidity and mortality. The virus mutates from year to year, making the existing vaccines ineffective on a regular basis, and requiring that new strains be chosen for a new vaccine. Less-frequent major changes, known as antigenic shift, create new strains against which the human population has little protective immunity, thereby causing worldwide pandemics. The most recent pandemics include the 1918 'Spanish' flu, one of the most deadly outbreaks in recorded history, which killed 30-50 million people worldwide, the 1957 'Asian' flu, and the 1968 'Hong Kong' flu. Motivated by the need for a better understanding of influenza evolution, we have developed flexible protocols that make it possible to apply large-scale sequencing techniques to the highly variable influenza genome. Here we report the results of sequencing 209 complete genomes of the human influenza A virus, encompassing a total of 2,821,103 nucleotides. In addition to increasing markedly the number of publicly available, complete influenza virus genomes, we have discovered several anomalies in these first 209 genomes that demonstrate the dynamic nature of influenza transmission and evolution. This new, large-scale sequencing effort promises to provide a more comprehensive picture of the evolution of influenza viruses and of their pattern of transmission through human and animal populations. All data from this project are being deposited, without delay, in public archives.

Journal ArticleDOI
TL;DR: A phylogenetic analysis of 156 complete genomes of human H3N2 influenza A viruses collected between 1999 and 2004 from New York State, United States demonstrated that multiple lineages can co-circulate, persist, and reassort in epidemiologically significant ways, and underscore the importance of genomic analyses for future influenza surveillance.
Abstract: Understanding the evolution of influenza A viruses in humans is important for surveillance and vaccine strain selection. We performed a phylogenetic analysis of 156 complete genomes of human H3N2 influenza A viruses collected between 1999 and 2004 from New York State, United States, and observed multiple co-circulating clades with different population frequencies. Strikingly, phylogenies inferred for individual gene segments revealed that multiple reassortment events had occurred among these clades, such that one clade of H3N2 viruses present at least since 2000 had provided the hemagglutinin gene for all those H3N2 viruses sampled after the 2002–2003 influenza season. This reassortment event was the likely progenitor of the antigenically variant influenza strains that caused the A/Fujian/411/2002-like epidemic of the 2003–2004 influenza season. However, despite sharing the same hemagglutinin, these phylogenetically distinct lineages of viruses continue to co-circulate in the same population. These data, derived from the first large-scale analysis of H3N2 viruses, convincingly demonstrate that multiple lineages can co-circulate, persist, and reassort in epidemiologically significant ways, and underscore the importance of genomic analyses for future influenza surveillance.

Journal ArticleDOI
TL;DR: The poor induction of IFN-β, a key component of innate immunity, and the ability of the virus to induce chemokines could explain aspects of the pathogenesis of SARS.
Abstract: The pathogenesis of severe acute respiratory syndrome (SARS) remains unclear. Macrophages are key sentinel cells in the respiratory system, and it is therefore relevant to compare the responses of human macrophages to infections with the SARS coronavirus (SARS-CoV) and other respiratory viruses. Primary human monocyte-derived macrophages were infected with SARS-CoV in vitro. Virus replication was monitored by measuring the levels of positive- and negative-strand RNA, by immunofluorescence detection of the SARS-CoV nucleoprotein, and by titration of the infectious virus. The gene expression profiles of macrophages infected with SARS-CoV, human coronavirus 229E, and influenza A (H1N1) virus were compared by using microarrays and real-time quantitative reverse transcriptase PCR. Secreted cytokines were measured with an enzyme-linked immunosorbent assay. SARS-CoV initiated viral gene transcription and protein synthesis in macrophages, but replication was abortive and no infectious virus was produced. In contrast to the case with human coronavirus 229E and influenza A virus, there was little or no induction of beta interferon (IFN-β) in SARS-CoV-infected macrophages. Furthermore, SARS-CoV induced the expression of chemokines such as CXCL10/IFN-γ-inducible protein 10 and CCL2/monocyte chemotactic protein 1. The poor induction of IFN-β, a key component of innate immunity, and the ability of the virus to induce chemokines could explain aspects of the pathogenesis of SARS.

Journal ArticleDOI
TL;DR: Direct contact with sick poultry, young age, pneumonia and lymphopenia, and acute respiratory distress syndrome should prompt specific laboratory testing for H5 influenza.
Abstract: Influenza A (H5N1) is endemic in poultry across much of Southeast Asia, but limited information exists on the distinctive features of the few human cases. In Thailand, we instituted nationwide surveillance and tested respiratory specimens by polymerase chain reaction and viral isolation. From January 1 to March 31, 2004, we reviewed 610 reports and identified 12 confirmed and 21 suspected cases. All 12 confirmed case-patients resided in villages that experienced abnormal chicken deaths, 9 lived in households whose backyard chickens died, and 8 reported direct contact with dead chickens. Seven were children <14 years of age. Fever preceded dyspnea by a median of 5 days, and lymphopenia significantly predicted acute respiratory distress syndrome development and death. Among hundreds of thousands of potential human cases of influenza A (H5N1) in Asia, a history of direct contact with sick poultry, young age, pneumonia and lymphopenia, and progression to acute respiratory distress syndrome should prompt specific laboratory testing for H5 influenza.

Journal ArticleDOI
TL;DR: In this paper, the authors studied the pathogenicity of four human and nine avian H5N1/04 influenza viruses in ferrets (an excellent model for influenza studies).
Abstract: The 2004 outbreaks of H5N1 influenza viruses in Vietnam and Thailand were highly lethal to humans and to poultry; therefore, newly emerging avian influenza A viruses pose a continued threat, not only to avian species but also to humans. We studied the pathogenicity of four human and nine avian H5N1/04 influenza viruses in ferrets (an excellent model for influenza studies). All four human isolates were fatal to intranasally inoculated ferrets. The human isolate A/Vietnam/1203/04 (H5N1) was the most pathogenic isolate; the severity of disease was associated with a broad tissue tropism and high virus titers in multiple organs, including the brain. High fever, weight loss, anorexia, extreme lethargy, and diarrhea were observed. Two avian H5N1/04 isolates were as pathogenic as the human viruses, causing lethal systemic infections in ferrets. Seven of nine H5N1/04 viruses isolated from avian species caused mild infections, with virus replication restricted to the upper respiratory tract. All chicken isolates were nonlethal to ferrets. A sequence analysis revealed polybasic amino acids in the hemagglutinin connecting peptides of all H5N1/04 viruses, indicating that multiple molecular differences in other genes are important for a high level of virulence. Interestingly, the human A/Vietnam/1203/04 isolate had a lysine substitution at position 627 of PB2 and had one to eight amino acid changes in all gene products except that of the M1 gene, unlike the A/chicken/Vietnam/C58/04 and A/quail/Vietnam/36/04 viruses. Our results indicate that viruses that are lethal to mammals are circulating among birds in Asia and suggest that pathogenicity in ferrets, and perhaps humans, reflects a complex combination of different residues rather than a single amino acid difference.

Journal ArticleDOI
Anne Moscona1
TL;DR: The neuraminidase inhibitors provide valuable defenses against pandemic and seasonal influenza, and misuse of oseltamivir could rob us of the advantages that neuraminids provide, by favoring the emergence of OseltAMivir-resistant influenza virus.
Abstract: The neuraminidase inhibitors provide valuable defenses against pandemic and seasonal influenza. Dr. Anne Moscona writes that misuse of oseltamivir could rob us of the advantages that neuraminidase inhibitors provide, by favoring the emergence of oseltamivir-resistant influenza virus.

Journal ArticleDOI
23 Feb 2005-JAMA
TL;DR: Clinicians should use timely epidemiologic data to ascertain if influenza is circulating in their communities, then either treat patients with influenza-like illness empirically or obtain a rapid influenza test to assist with management decisions.
Abstract: ContextInfluenza vaccination lowers, but does not eliminate, the risk of influenza. Making a reliable, rapid clinical diagnosis is essential to appropriate patient management that may be especially important during shortages of antiviral agents caused by high demand.ObjectivesTo systematically review the precision and accuracy of symptoms and signs of influenza. A secondary objective was to review the operating characteristics of rapid diagnostic tests for influenza (results available in <30 min).Data SourcesStructured search strategy using MEDLINE (January 1966-September 2004) and subsequent searches of bibliographies of retrieved articles to identify articles describing primary studies dealing with the diagnosis of influenza based on clinical signs and symptoms. The MEDLINE search used the Medical Subject Headings EXP influenza or EXP influenza A virus or EXP influenza A virus human or EXP influenza B virus and the Medical Subject Headings or terms EXP sensitivity and specificity or EXP medical history taking or EXP physical examination or EXP reproducibility of results or EXP observer variation or symptoms.mp or clinical signs.mp or sensitivity.mp or specificity.mp.Study SelectionOf 915 identified articles on clinical assessment of influenza-related illness, 17 contained data on the operating characteristics of symptoms and signs using an independent criterion standard. Of these, 11 were eliminated based on 4 inclusion criteria and availability of nonduplicative primary data.Data ExtractionTwo authors independently reviewed and abstracted data for estimating the likelihood ratios (LRs) of clinical diagnostic findings. Differences were resolved by discussion and consensus.Data SynthesisNo symptom or sign had a summary LR greater than 2 in studies that enrolled patients without regard to age. For decreasing the likelihood of influenza, the absence of fever (LR, 0.40; 95% confidence interval [CI], 0.25-0.66), cough (LR, 0.42; 95% CI, 0.31-0.57), or nasal congestion (LR, 0.49; 95% CI, 0.42-0.59) were the only findings that had summary LRs less than 0.5. In studies limited to patients aged 60 years or older, the combination of fever, cough, and acute onset (LR, 5.4; 95% CI, 3.8-7.7), fever and cough (LR, 5.0; 95% CI, 3.5-6.9), fever alone (LR, 3.8; 95% CI, 2.8-5.0), malaise (LR, 2.6; 95% CI, 2.2-3.1), and chills (LR, 2.6; 95% CI, 2.0-3.2) increased the likelihood of influenza to the greatest degree. The presence of sneezing among older patients made influenza less likely (LR, 0.47; 95% CI, 0.24-0.92).ConclusionsClinical findings identify patients with influenza-like illness but are not particularly useful for confirming or excluding the diagnosis of influenza. Clinicians should use timely epidemiologic data to ascertain if influenza is circulating in their communities, then either treat patients with influenza-like illness empirically or obtain a rapid influenza test to assist with management decisions.

Journal ArticleDOI
15 Sep 2005-Virology
TL;DR: The findings suggest that urgent attention should be paid to the control of H9N2 influenza viruses in animals and to the human's influenza pandemic preparedness.