scispace - formally typeset
Search or ask a question

Showing papers on "Influenza A virus published in 2015"


Journal ArticleDOI
TL;DR: This report updates the 2017–18 recommendations of the Advisory Committee on Immunization Practices regarding the use of seasonal influenza vaccines in the United States and focuses on the recommendations for use of vaccines for the prevention and control of influenza during the 2018–19 season.
Abstract: This report updates the 2020-21 recommendations of the Advisory Committee on Immunization Practices (ACIP) regarding the use of seasonal influenza vaccines in the United States (MMWR Recomm Rep 2020;69[No. RR-8]). Routine annual influenza vaccination is recommended for all persons aged ≥6 months who do not have contraindications. For each recipient, a licensed and age-appropriate vaccine should be used. ACIP makes no preferential recommendation for a specific vaccine when more than one licensed, recommended, and age-appropriate vaccine is available. During the 2021-22 influenza season, the following types of vaccines are expected to be available: inactivated influenza vaccines (IIV4s), recombinant influenza vaccine (RIV4), and live attenuated influenza vaccine (LAIV4).The 2021-22 influenza season is expected to coincide with continued circulation of SARS-CoV-2, the virus that causes COVID-19. Influenza vaccination of persons aged ≥6 months to reduce prevalence of illness caused by influenza will reduce symptoms that might be confused with those of COVID-19. Prevention of and reduction in the severity of influenza illness and reduction of outpatient visits, hospitalizations, and intensive care unit admissions through influenza vaccination also could alleviate stress on the U.S. health care system. Guidance for vaccine planning during the pandemic is available at https://www.cdc.gov/vaccines/pandemic-guidance/index.html. Recommendations for the use of COVID-19 vaccines are available at https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/covid-19.html, and additional clinical guidance is available at https://www.cdc.gov/vaccines/covid-19/clinical-considerations/covid-19-vaccines-us.html.Updates described in this report reflect discussions during public meetings of ACIP that were held on October 28, 2020; February 25, 2021; and June 24, 2021. Primary updates to this report include the following six items. First, all seasonal influenza vaccines available in the United States for the 2021-22 season are expected to be quadrivalent. Second, the composition of 2021-22 U.S. influenza vaccines includes updates to the influenza A(H1N1)pdm09 and influenza A(H3N2) components. U.S.-licensed influenza vaccines will contain hemagglutinin derived from an influenza A/Victoria/2570/2019 (H1N1)pdm09-like virus (for egg-based vaccines) or an influenza A/Wisconsin/588/2019 (H1N1)pdm09-like virus (for cell culture-based and recombinant vaccines), an influenza A/Cambodia/e0826360/2020 (H3N2)-like virus, an influenza B/Washington/02/2019 (Victoria lineage)-like virus, and an influenza B/Phuket/3073/2013 (Yamagata lineage)-like virus. Third, the approved age indication for the cell culture-based inactivated influenza vaccine, Flucelvax Quadrivalent (ccIIV4), has been expanded from ages ≥4 years to ages ≥2 years. Fourth, discussion of administration of influenza vaccines with other vaccines includes considerations for coadministration of influenza vaccines and COVID-19 vaccines. Providers should also consult current ACIP COVID-19 vaccine recommendations and CDC guidance concerning coadministration of these vaccines with influenza vaccines. Vaccines that are given at the same time should be administered in separate anatomic sites. Fifth, guidance concerning timing of influenza vaccination now states that vaccination soon after vaccine becomes available can be considered for pregnant women in the third trimester. As previously recommended, children who need 2 doses (children aged 6 months through 8 years who have never received influenza vaccine or who have not previously received a lifetime total of ≥2 doses) should receive their first dose as soon as possible after vaccine becomes available to allow the second dose (which must be administered ≥4 weeks later) to be received by the end of October. For nonpregnant adults, vaccination in July and August should be avoided unless there is concern that later vaccination might not be possible. Sixth, contraindications and precautions to the use of ccIIV4 and RIV4 have been modified, specifically with regard to persons with a history of severe allergic reaction (e.g., anaphylaxis) to an influenza vaccine. A history of a severe allergic reaction to a previous dose of any egg-based IIV, LAIV, or RIV of any valency is a precaution to use of ccIIV4. A history of a severe allergic reaction to a previous dose of any egg-based IIV, ccIIV, or LAIV of any valency is a precaution to use of RIV4. Use of ccIIV4 and RIV4 in such instances should occur in an inpatient or outpatient medical setting under supervision of a provider who can recognize and manage a severe allergic reaction; providers can also consider consulting with an allergist to help identify the vaccine component responsible for the reaction. For ccIIV4, history of a severe allergic reaction (e.g., anaphylaxis) to any ccIIV of any valency or any component of ccIIV4 is a contraindication to future use of ccIIV4. For RIV4, history of a severe allergic reaction (e.g., anaphylaxis) to any RIV of any valency or any component of RIV4 is a contraindication to future use of RIV4. This report focuses on recommendations for the use of vaccines for the prevention and control of seasonal influenza during the 2021-22 influenza season in the United States. A brief summary of the recommendations and a link to the most recent Background Document containing additional information are available at https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/flu.html. These recommendations apply to U.S.-licensed influenza vaccines used according to Food and Drug Administration-licensed indications. Updates and other information are available from CDC's influenza website (https://www.cdc.gov/flu); vaccination and health care providers should check this site periodically for additional information.

1,388 citations


Journal ArticleDOI
TL;DR: A meta-analysis of data from eight published RNAi screens and integrated with three protein interaction datasets revealed a functionally validated biochemical landscape of the influenza-host interface, which illuminates a viral-host network of high-confidence human proteins that are essential for influenza A virus replication.

795 citations


Journal ArticleDOI
18 Sep 2015-Science
TL;DR: The results represent a proof of concept for the design of HA stem mimics that elicit bnAbs against influenza A group 1 viruses and completely protects mice in lethal heterologous and heterosubtypic challenge models, and reduces fever after sublethal challenge in cynomolgus monkeys.
Abstract: The identification of human broadly neutralizing antibodies (bnAbs) targeting the hemagglutinin (HA) stem revitalized hopes of developing a universal influenza vaccine. Using a rational design and library approach, we engineered stable HA stem antigens (“mini-HAs”) based on an H1 subtype sequence. Our most advanced candidate exhibits structural and bnAb binding properties comparable to those of full-length HA, completely protects mice in lethal heterologous and heterosubtypic challenge models, and reduces fever after sublethal challenge in cynomolgus monkeys. Antibodies elicited by this mini-HA in mice and nonhuman primates bound a wide range of HAs, competed with human bnAbs for HA stem binding, neutralized H5N1 viruses, and mediated antibody-dependent effector activity. These results represent a proof of concept for the design of HA stem mimics that elicit bnAbs against influenza A group 1 viruses.

450 citations


Journal ArticleDOI
09 Jul 2015-Nature
TL;DR: Detailed epidemic models support differences in age of infection, combined with the less frequent travel of children, as probable drivers of the differences in the patterns of global circulation, suggesting a complex interaction between virus evolution, epidemiology, and human behaviour.
Abstract: Understanding the spatiotemporal patterns of emergence and circulation of new human seasonal influenza virus variants is a key scientific and public health challenge. The global circulation patterns of influenza A/H3N2 viruses are well characterized, but the patterns of A/H1N1 and B viruses have remained largely unexplored. Here we show that the global circulation patterns of A/H1N1 (up to 2009), B/Victoria, and B/Yamagata viruses differ substantially from those of A/H3N2 viruses, on the basis of analyses of 9,604 haemagglutinin sequences of human seasonal influenza viruses from 2000 to 2012. Whereas genetic variants of A/H3N2 viruses did not persist locally between epidemics and were reseeded from East and Southeast Asia, genetic variants of A/H1N1 and B viruses persisted across several seasons and exhibited complex global dynamics with East and Southeast Asia playing a limited role in disseminating new variants. The less frequent global movement of influenza A/H1N1 and B viruses coincided with slower rates of antigenic evolution, lower ages of infection, and smaller, less frequent epidemics compared to A/H3N2 viruses. Detailed epidemic models support differences in age of infection, combined with the less frequent travel of children, as probable drivers of the differences in the patterns of global circulation, suggesting a complex interaction between virus evolution, epidemiology, and human behaviour.

433 citations


Journal ArticleDOI
24 Apr 2015-Science
TL;DR: It is suggested that IRF7-dependent amplification of type I and III IFNs is required for protection against primary infection by influenza virus in humans and that severe influenza may result from single-gene inborn errors of immunity.
Abstract: Severe influenza disease strikes otherwise healthy children and remains unexplained. We report compound heterozygous null mutations in IRF7, which encodes the transcription factor interferon regulatory factor 7, in an otherwise healthy child who suffered life-threatening influenza during primary infection. In response to influenza virus, the patient's leukocytes and plasmacytoid dendritic cells produced very little type I and III interferons (IFNs). Moreover, the patient's dermal fibroblasts and induced pluripotent stem cell (iPSC)-derived pulmonary epithelial cells produced reduced amounts of type I IFN and displayed increased influenza virus replication. These findings suggest that IRF7-dependent amplification of type I and III IFNs is required for protection against primary infection by influenza virus in humans. They also show that severe influenza may result from single-gene inborn errors of immunity.

368 citations


Journal ArticleDOI
TL;DR: An in-depth study of the B cell response to the pandemic 2009 H1N1 vaccine over consecutive years found that people with low titers of preexisting antibodies were more likely to generate a broadly reactive response that targets the more conserved hemagglutinin (HA) stalk region, whereas those with higher levels of preeXisting antibodies responded by targeting the more variable HA head.
Abstract: Generating a broadly protective influenza vaccine is critical to global health. Understanding how immune memory influences influenza immunity is central to this goal. We undertook an in-depth study of the B cell response to the pandemic 2009 H1N1 vaccine over consecutive years. Analysis of monoclonal antibodies generated from vaccine-induced plasmablasts demonstrated that individuals with low preexisting serological titers to the vaccinating strain generated a broadly reactive, hemagglutinin (HA) stalk-biased response. Higher preexisting serum antibody levels correlated with a strain-specific HA head-dominated response. We demonstrate that this HA head immunodominance encompasses poor accessibility of the HA stalk epitopes. Further, we show polyreactivity of HA stalk-reactive antibodies that could cause counterselection of these cells. Thus, preexisting memory B cells against HA head epitopes predominate, inhibiting a broadly protective response against the HA stalk upon revaccination with similar strains. Consideration of influenza exposure history is critical for new vaccine strategies designed to elicit broadly neutralizing antibodies.

334 citations


Journal ArticleDOI
TL;DR: This Review discusses current knowledge about vRNP trafficking within host cells and the function of these complexes in the context of the virus life cycle, highlighting how structure contributes to function and the crucial interactions with host cell pathways, as well as on the information gaps that remain.
Abstract: Influenza A viral ribonucleoprotein (vRNP) complexes comprise the eight genomic negative-sense RNAs, each of which is bound to multiple copies of the vRNP and a trimeric viral polymerase complex. The influenza virus life cycle centres on the vRNPs, which in turn rely on host cellular processes to carry out functions that are necessary for the successful completion of the virus life cycle. In this Review, we discuss our current knowledge about vRNP trafficking within host cells and the function of these complexes in the context of the virus life cycle, highlighting how structure contributes to function and the crucial interactions with host cell pathways, as well as on the information gaps that remain. An improved understanding of how vRNPs use host cell pathways is essential to identify mechanisms of virus pathogenicity, host adaptation and, ultimately, new targets for antiviral intervention.

330 citations


Journal ArticleDOI
TL;DR: The molecular events at the virus–host interface during influenza virus infection is summarised, highlighting some of the important cellular responses.
Abstract: The influenza viruses are some of the most important human pathogens, causing substantial seasonal and pandemic morbidity and mortality. In humans, infection of the lower respiratory tract of can result in flooding of the alveolar compartment, development of acute respiratory distress syndrome and death from respiratory failure. Influenza-mediated damage of the airway, alveolar epithelium and alveolar endothelium results from a combination of: 1) intrinsic viral pathogenicity, attributable to its tropism for host airway and alveolar epithelial cells; and 2) a robust host innate immune response, which, while contributing to viral clearance, can worsen the severity of lung injury. In this review, we summarise the molecular events at the virus-host interface during influenza virus infection, highlighting some of the important cellular responses. We discuss immune-mediated viral clearance, the mechanisms promoting or perpetuating lung injury, lung regeneration after influenza-induced injury, and recent advances in influenza prevention and therapy.

315 citations


Journal ArticleDOI
TL;DR: It is reported that MIR2911, a honeysuckle-encoded atypical microRNA, directly targets IAVs with a broad spectrum and may represent a novel type of natural product that effectively suppresses viral infection.
Abstract: Influenza A viruses (IAVs), particularly H1N1, H5N1 and H7N9, pose a substantial threat to public health worldwide. Here, we report that MIR2911, a honeysuckle (HS)-encoded atypical microRNA, directly targets IAVs with a broad spectrum. MIR2911 is highly stable in HS decoction, and continuous drinking or gavage feeding of HS decoction leads to a significant elevation of the MIR2911 level in mouse peripheral blood and lung. Bioinformatics prediction and a luciferase reporter assay showed that MIR2911 could target various IAVs, including H1N1, H5N1 and H7N9. Synthetic MIR2911 significantly inhibited H1N1-encoded PB2 and NS1 protein expression, but did not affect mutants in which the MIR2911-binding nucleotide sequences were altered. Synthetic MIR2911, extracted RNA from HS decoction and HS decoction all significantly inhibited H1N1 viral replication and rescued viral infection-induced mouse weight loss, but did not affect infection with a mutant virus in which the MIR2911-binding nucleotide sequences of PB2 and NS1 were altered. Importantly, the inhibitory effect of HS decoction on viral replication was abolished by an anti-MIR2911 antagomir, indicating that the physiological concentration of MIR2911 in HS decoction could directly and sufficiently suppress H1N1 viral replication. MIR2911 also inhibited H5N1 and H7N9 viral replication in vitro and in vivo. Strikingly, administration of MIR2911 or HS decoction dramatically reduced mouse mortality caused by H5N1 infection. Our results demonstrate that MIR2911 is the first active component identified in Traditional Chinese Medicine to directly target various IAVs and may represent a novel type of natural product that effectively suppresses viral infection.

307 citations


Journal ArticleDOI
25 Dec 2015-Viruses
TL;DR: It is indicated that quercetin showing inhibitory activity in the early stage of influenza infection provides a future therapeutic option to develop effective, safe and affordable natural products for the treatment and prophylaxis of IAV infections.
Abstract: Influenza A viruses (IAVs) cause seasonal pandemics and epidemics with high morbidity and mortality, which calls for effective anti-IAV agents. The glycoprotein hemagglutinin of influenza virus plays a crucial role in the initial stage of virus infection, making it a potential target for anti-influenza therapeutics development. Here we found that quercetin inhibited influenza infection with a wide spectrum of strains, including A/Puerto Rico/8/34 (H1N1), A/FM-1/47/1 (H1N1), and A/Aichi/2/68 (H3N2) with half maximal inhibitory concentration (IC50) of 7.756 ± 1.097, 6.225 ± 0.467, and 2.738 ± 1.931 μg/mL, respectively. Mechanism studies identified that quercetin showed interaction with the HA2 subunit. Moreover, quercetin could inhibit the entry of the H5N1 virus using the pseudovirus-based drug screening system. This study indicates that quercetin showing inhibitory activity in the early stage of influenza infection provides a future therapeutic option to develop effective, safe and affordable natural products for the treatment and prophylaxis of IAV infections.

286 citations


Journal ArticleDOI
TL;DR: It is demonstrated that ACE2 plays a critical role in influenza A (H7N9) virus-induced acute lung injury, and suggested that might be a useful potential therapeutic target for future influenza A(H7n9) outbreaks.
Abstract: Since March 2013, the emergence of an avian-origin influenza A (H7N9) virus has raised concern in China. Although most infections resulted in respiratory illness, some severe cases resulted in acute respiratory distress syndrome (ARDS), which is a severe form of acute lung injury (ALI) that further contributes to morbidity. To date, no effective drugs that improve the clinical outcome of influenza A (H7N9) virus-infected patients have been identified. Angiotensin-converting enzyme (ACE) and ACE2 are involved in several pathologies such as cardiovascular functions, renal disease, and acute lung injury. In the current study, we report that ACE2 could mediate the severe acute lung injury induced by influenza A (H7N9) virus infection in an experimental mouse model. Moreover, ACE2 deficiency worsened the disease pathogenesis markedly, mainly by targeting the angiotensin II type 1 receptor (AT1). The current findings demonstrate that ACE2 plays a critical role in influenza A (H7N9) virus-induced acute lung injury, and suggest that might be a useful potential therapeutic target for future influenza A (H7N9) outbreaks.

Journal ArticleDOI
TL;DR: The A/goose/Guangdong/1/96‐like hemagglutinin (HA) genes of highly pathogenic avian influenza (HPAI) A(H5) viruses have continued to rapidly evolve since the most recent update to the H5 clade nomenclature by the WHO/OIE/FAO H5N1 Evolution Working Group.
Abstract: This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1111/irv.12324

Journal ArticleDOI
TL;DR: Both innate and adaptive antibacterial host defenses are impaired in the context of preceding influenza virus infection, and this minireview synthesizes these data into a shared central theme of pathogenesis.
Abstract: Seasonal influenza virus infection presents a major strain on the health care system. Influenza virus infection has pandemic potential, which was repeatedly observed during the last century. Severe disease may occur in the young, in the elderly, in those with preexisting lung disease, and in previously healthy individuals. A common cause of severe influenza pathogenesis is superinfection with bacterial pathogens, namely, Staphylococcus aureus and Streptococcus pneumoniae. A great deal of recent research has focused on the immune pathways involved in influenza-induced susceptibility to secondary bacterial pneumonia. Both innate and adaptive antibacterial host defenses are impaired in the context of preceding influenza virus infection. The goal of this minireview is to highlight these findings and synthesize these data into a shared central theme of pathogenesis.

Journal ArticleDOI
TL;DR: In this paper, the authors dissect the kinetic emergence of different effector mechanisms across the spectrum of H7N9 disease and recovery and find that a diversity of response mechanisms contribute to resolution and survival.
Abstract: The avian origin A/H7N9 influenza virus causes high admission rates (>99%) and mortality (>30%), with ultimately favourable outcomes ranging from rapid recovery to prolonged hospitalization. Using a multicolour assay for monitoring adaptive and innate immunity, here we dissect the kinetic emergence of different effector mechanisms across the spectrum of H7N9 disease and recovery. We find that a diversity of response mechanisms contribute to resolution and survival. Patients discharged within 2-3 weeks have early prominent H7N9-specific CD8(+) T-cell responses, while individuals with prolonged hospital stays have late recruitment of CD8(+)/CD4(+) T cells and antibodies simultaneously (recovery by week 4), augmented even later by prominent NK cell responses (recovery >30 days). In contrast, those who succumbed have minimal influenza-specific immunity and little evidence of T-cell activation. Our study illustrates the importance of robust CD8(+) T-cell memory for protection against severe influenza disease caused by newly emerging influenza A viruses.

Journal ArticleDOI
TL;DR: A recent review as mentioned in this paper provides an up-to-date overview on selenium in infectious diseases caused by viruses (e.g., HIV, IAV, hepatitis C virus, poliovirus, West Nile virus) and bacteria (i.e., M. tuberculosis, Helicobacter pylori).

Journal ArticleDOI
TL;DR: The epidemiology, evolution, and recent outbreaks of Aivs in China are reviewed, reasons behind the recent increase in the emergence of novel AIVs are discussed, and warning signs which may point to the emerged of a potentially virulent and highly transmissible AIV to humans are identified.
Abstract: Novel reassortants of H7N9, H10N8, and H5N6 avian influenza viruses (AIVs) are currently circulating in China's poultry flocks, occasionally infecting humans and other mammals. Combined with the sometimes enzootic H5N1 and H9N2 strains, this cauldron of genetically diverse AIVs pose significant risks to public health. Here, we review the epidemiology, evolution, and recent outbreaks of AIVs in China, discuss reasons behind the recent increase in the emergence of novel AIVs, and identify warning signs which may point to the emergence of a potentially virulent and highly transmissible AIV to humans. This review will be useful to authorities who consider options for the detection and control of AIV transmission in animals and humans, with the goal of preventing future epidemics and pandemics.

Journal ArticleDOI
13 Mar 2015-PLOS ONE
TL;DR: Concerns about the increasing prevalence of adamantane-resistant influenza A viruses are raised and the importance of monitoring the emergence and worldwide spread of adamantanes-resistant variants is highlighted.
Abstract: Adamantanes (amantadine and rimantadine) have been used to prevent and treat influenza A virus infections for many years; however, resistance to these drugs has been widely reported in the world. To investigate the frequency and distribution of M2 gene mutations in adamantane-resistant influenza variants circulated in the world between 1902 and 2013, 31251 available M2 protein sequences from different HA-subtype influenza A viruses (H1–H17) were analyzed and adamantane resistance-associated mutations were compared (L26F, V27A, A30T, A30V, S31N, G34E, and L38F). We find that 45.2% (n = 14132) of influenza A (H1–H17) viruses circulating globally were resistant to adamantanes, and the vast majority of resistant viruses (95%) bear S31N mutations. Whereas, only about 1% have V27A mutations and other mutations (L26F, A30T, G34E, and L38F) were extremely rare (their prevalence appeared to be < 0.2%). Our results confirm that H1, H3, H5, H7, H9, and H17 subtype influenza A viruses exhibit high-level resistance to adamantanes. In contrast, the appearance of adamantane-resistant mutants in H2, H4, H6, H10, and H11 subtypes was rare. However, no adamantane resistance viruses were identified among other HA subtypes (H8, H12–H16). Our findings indicate that the frequency and distribution of adamantane-resistant influenza variants varied among different HA subtypes, host species, years of isolation, and geographical areas. This comprehensive study raises concerns about the increasing prevalence of adamantane-resistant influenza A viruses and highlights the importance of monitoring the emergence and worldwide spread of adamantane-resistant variants.

Journal ArticleDOI
04 Jun 2015-Nature
TL;DR: It is shown that H7N9 viruses have spread from eastern to southern China and become persistent in chickens, which has led to the establishment of multiple regionally distinct lineages with different reassortant genotypes.
Abstract: Since 2013 the occurrence of human infections by a novel avian H7N9 influenza virus in China has demonstrated the continuing threat posed by zoonotic pathogens. Although the first outbreak wave that was centred on eastern China was seemingly averted, human infections recurred in October 2013 (refs 3-7). It is unclear how the H7N9 virus re-emerged and how it will develop further; potentially it may become a long-term threat to public health. Here we show that H7N9 viruses have spread from eastern to southern China and become persistent in chickens, which has led to the establishment of multiple regionally distinct lineages with different reassortant genotypes. Repeated introductions of viruses from Zhejiang to other provinces and the presence of H7N9 viruses at live poultry markets have fuelled the recurrence of human infections. This rapid expansion of the geographical distribution and genetic diversity of the H7N9 viruses poses a direct challenge to current disease control systems. Our results also suggest that H7N9 viruses have become enzootic in China and may spread beyond the region, following the pattern previously observed with H5N1 and H9N2 influenza viruses.

Journal Article
TL;DR: An initial estimate of seasonal influenza vaccine effectiveness at preventing laboratory-confirmed influenza virus infection associated with medically attended ARI based on data from 2,321 children and adults enrolled in the U.S. Influenza Vaccine Effectiveness Network during November 10-January 2, 2015 was 23% (95% confidence interval [CI] = 8%-36%).
Abstract: In the United States, annual vaccination against seasonal influenza is recommended for all persons aged ≥6 months. Each season since 2004-05, CDC has estimated the effectiveness of seasonal influenza vaccine in preventing medically attended acute respiratory illness (ARI) associated with laboratory-confirmed influenza. This season, early estimates of influenza vaccine effectiveness are possible because of widespread, early circulation of influenza viruses. By January 3, 2015, 46 states were experiencing widespread flu activity, with predominance of influenza A (H3N2) viruses. This report presents an initial estimate of seasonal influenza vaccine effectiveness at preventing laboratory-confirmed influenza virus infection associated with medically attended ARI based on data from 2,321 children and adults enrolled in the U.S. Influenza Vaccine Effectiveness Network (Flu VE) during November 10, 2014-January 2, 2015. During this period, overall vaccine effectiveness (VE) (adjusted for study site, age, sex, race/ethnicity, self-rated health, and days from illness onset to enrollment) against laboratory-confirmed influenza associated with medically attended ARI was 23% (95% confidence interval [CI] = 8%-36%). Most influenza infections were due to A (H3N2) viruses. This interim VE estimate is relatively low compared with previous seasons when circulating viruses and vaccine viruses were well-matched and likely reflects the fact that more than two-thirds of circulating A (H3N2) viruses are antigenically and genetically different (drifted) from the A (H3N2) vaccine component of 2014-15 Northern Hemisphere seasonal influenza vaccines. These early, low VE estimates underscore the need for ongoing influenza prevention and treatment measures. CDC continues to recommend influenza vaccination because the vaccine can still prevent some infections with the currently circulating A (H3N2) viruses as well as other viruses that might circulate later in the season, including influenza B viruses. Even when VE is reduced, vaccination still prevents some illness and serious influenza-related complications, including thousands of hospitalizations and deaths. Persons aged ≥6 months who have not yet been vaccinated this season should be vaccinated, including persons who might already have been ill with influenza this season.

Journal ArticleDOI
TL;DR: Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014 and poses substantial trade issues when they infect commercial poultry.
Abstract: Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.

Journal ArticleDOI
TL;DR: It is reviewed how recently strengthened influenza virus surveillance in pigs has revealed that influenza virus transmission from humans to swine is far more frequent than swine-to-human zoonosis, and is central in seeding swine globally with new viral diversity.

Journal ArticleDOI
TL;DR: Reverse genetics is used to demonstrate that mutations in HA antigenic site B are primarily responsible for the current mismatch in the H3N2 vaccine strain, providing an antigenic explanation for the low influenza vaccine efficacy observed during the 2014-2015 influenza season.

Journal ArticleDOI
TL;DR: What is known about the role of intermediate hosts in influenza emergence is outlined, knowledge of the new canine influenza viruses (CIVs) and how they provide key new information on the process of host adaptation is summarized, and the risk these viruses pose to human populations is assessed.
Abstract: Influenza A virus (IAV) infections in hosts outside the main aquatic bird reservoirs occur periodically. Although most such cross-species transmission events result in limited onward transmission in the new host, sustained influenza outbreaks have occurred in poultry and in a number of mammalian species, including humans, pigs, horses, seals, and mink. Recently, two distinct strains of IAV have emerged in domestic dogs, with each circulating widely for several years. Here, we briefly outline what is known about the role of intermediate hosts in influenza emergence, summarize our knowledge of the new canine influenza viruses (CIVs) and how they provide key new information on the process of host adaptation, and assess the risk these viruses pose to human populations.

Journal ArticleDOI
TL;DR: The viral NS1 protein is largely responsible for countering these IFN antiviral responses, but there are functional differences between the NS1 proteins of different virus strains.

Journal ArticleDOI
16 Jan 2015-eLife
TL;DR: Fundamental differences in the phylodynamics of the two co-circulating lineages of influenza B virus are revealed, showing that their individual dynamics are determined by a complex relationship between virus transmission, age of infection, and receptor binding preference.
Abstract: A complex interplay of viral, host, and ecological factors shapes the spatio-temporal incidence and evolution of human influenza viruses. Although considerable attention has been paid to influenza A viruses, a lack of equivalent data means that an integrated evolutionary and epidemiological framework has until now not been available for influenza B viruses, despite their significant disease burden. Through the analysis of over 900 full genomes from an epidemiological collection of more than 26,000 strains from Australia and New Zealand, we reveal fundamental differences in the phylodynamics of the two co-circulating lineages of influenza B virus (Victoria and Yamagata), showing that their individual dynamics are determined by a complex relationship between virus transmission, age of infection, and receptor binding preference. In sum, this work identifies new factors that are important determinants of influenza B evolution and epidemiology.

Journal ArticleDOI
TL;DR: VX-787 as discussed by the authors is a novel inhibitor of influenza virus replication that blocks the PB2 cap-snatching activity of the influenza viral polymerase complex, which has been shown to be effective in both prophylaxis and treatment models of mouse influenza and was superior to the neuraminidase inhibitor, oseltamivir.
Abstract: VX-787 is a novel inhibitor of influenza virus replication that blocks the PB2 cap-snatching activity of the influenza viral polymerase complex. Viral genetics and X-ray crystallography studies provide support for the idea that VX-787 occupies the 7-methyl GTP (m7GTP) cap-binding site of PB2. VX-787 binds the cap-binding domain of the PB2 subunit with a KD (dissociation constant) of 24 nM as determined by isothermal titration calorimetry (ITC). The cell-based EC50 (the concentration of compound that ensures 50% cell viability of an uninfected control) for VX-787 is 1.6 nM in a cytopathic effect (CPE) assay, with a similar EC50 in a viral RNA replication assay. VX-787 is active against a diverse panel of influenza A virus strains, including H1N1pdm09 and H5N1 strains, as well as strains with reduced susceptibility to neuraminidase inhibitors (NAIs). VX-787 was highly efficacious in both prophylaxis and treatment models of mouse influenza and was superior to the neuraminidase inhibitor, oseltamivir, including in delayed-start-to-treat experiments, with 100% survival at up to 96 h postinfection and partial survival in groups where the initiation of therapy was delayed up to 120 h postinfection. At different doses, VX-787 showed a 1-log to >5-log reduction in viral load (relative to vehicle controls) in mouse lungs. Overall, these favorable findings validate the PB2 subunit of the viral polymerase as a drug target for influenza therapy and support the continued development of VX-787 as a novel antiviral agent for the treatment of influenza infection.

Journal ArticleDOI
01 May 2015-Virology
TL;DR: Current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages is summarized.

Journal ArticleDOI
TL;DR: Understanding the molecular mechanisms by which influenza and secondary bacterial infections, coupled with the role of host risk factors, contribute to enhanced morbidity and mortality is essential to develop better therapeutic strategies to treat severe influenza.
Abstract: Influenza A virus infections in humans generally cause self-limited infections, but can result in severe disease, secondary bacterial pneumonias, and death Influenza viruses can replicate in epithelial cells throughout the respiratory tree and can cause tracheitis, bronchitis, bronchiolitis, diffuse alveolar damage with pulmonary edema and hemorrhage, and interstitial and airspace inflammation The mechanisms by which influenza infections result in enhanced disease, including development of pneumonia and acute respiratory distress, are multifactorial, involving host, viral, and bacterial factors Host factors that enhance risk of severe influenza disease include underlying comorbidities, such as cardiac and respiratory disease, immunosuppression, and pregnancy Viral parameters enhancing disease risk include polymerase mutations associated with host switch and adaptation, viral proteins that modulate immune and antiviral responses, and virulence factors that increase disease severity, which can be especially prominent in pandemic viruses and some zoonotic influenza viruses causing human infections Influenza viral infections result in damage to the respiratory epithelium that facilitates secondary infection with common bacterial pneumopathogens and can lead to secondary bacterial pneumonias that greatly contribute to respiratory distress, enhanced morbidity, and death Understanding the molecular mechanisms by which influenza and secondary bacterial infections, coupled with the role of host risk factors, contribute to enhanced morbidity and mortality is essential to develop better therapeutic strategies to treat severe influenza

Journal ArticleDOI
TL;DR: The bird migration network is shown to better reflect the observed viral gene sequence data than other networks and contributes to seasonal H5N1 epidemics in local regions and its large-scale transmission along flyways.
Abstract: The spatial spread of the highly pathogenic avian influenza virus H5N1 and its long-term persistence in Asia have resulted in avian influenza panzootics and enormous economic losses in the poultry sector. However, an understanding of the regional long-distance transmission and seasonal patterns of the virus is still lacking. In this study, we present a phylogeographic approach to reconstruct the viral migration network. We show that within each wild fowl migratory flyway, the timing of H5N1 outbreaks and viral migrations are closely associated, but little viral transmission was observed between the flyways. The bird migration network is shown to better reflect the observed viral gene sequence data than other networks and contributes to seasonal H5N1 epidemics in local regions and its large-scale transmission along flyways. These findings have potentially far-reaching consequences, improving our understanding of how bird migration drives the periodic reemergence of H5N1 in Asia.

Journal ArticleDOI
TL;DR: This review aims to provide a comprehensive overview of influenza A viruses by shedding light on interspecies virus transmission and summarising the current knowledge regarding how influenza viruses can adapt to a new host.