scispace - formally typeset
Search or ask a question
Topic

Infrared dark cloud

About: Infrared dark cloud is a research topic. Over the lifetime, 232 publications have been published within this topic receiving 13800 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a survey of the 616-523 H2O maser transition toward a sample of 140 compact cores in infrared dark clouds using the Very Large Array.
Abstract: We present a survey of the 616-523 H2O maser transition toward a sample of 140 compact cores in infrared dark clouds using the Very Large Array. Strong (>1 Jy) H2O maser emission was found associated with 17 cores, indicative of star formation in these cores. We infer that the cores with H2O masers have embedded protostars. Cores associated with maser emission have masses of 12 to 2 × 103 M☉, similar to the mass range in the entire sample. The H2O maser detection rate (12%) toward the compact, cold cores is much lower than that toward high-mass protostellar objects and ultracompact H II regions. The detection rate of H2O masers is significantly higher for higher mass cores than for lower mass cores. We suggest that some of the most massive infrared dark cloud cores without H2O maser emission are at an evolutionary stage earlier than the protostellar phases. They are prime candidates for high-mass starless cores.

122 citations

Journal ArticleDOI
TL;DR: In this paper, high angular resolution millimeter continuum images were obtained with the IRAM Plateau de Bure Interferometer toward four high-mass (200-1800 M?) IRDC cores that show evidence for active high mass star formation (M > 8 M?).
Abstract: Infrared dark clouds (IRDCs) are a distinct class of interstellar molecular cloud identified as dark extinction features against the bright mid-infrared Galactic background. Here we present high angular resolution millimeter continuum images obtained with the IRAM Plateau de Bure Interferometer toward four high-mass (200-1800 M?) IRDC cores that show evidence for active high-mass star formation (M > 8 M?). We detect twelve bright (>7 mJy), compact (2'', 0.024 pc) condensations toward these cores. Two of the cores (G024.60+00.08 MM1 and G024.60+00.08 MM2) are resolved into multiple protostellar condensations, while one core (G022.35+00.41 MM1) shows two condensations. The remaining core (G024.33+00.11 MM1) contains a single, compact protostellar condensation with a very rich molecular spectrum, indicating that this is a hot molecular core associated with an early stage in the formation of a high-mass protostar. The derived gas masses for these condensations suggest that each core is forming at least one high-mass protostar (Mgas > 8 M?), and three cores are also forming lower mass protostars (Mgas ~ 2-5 M?). A comparison of the ratios of the gas masses (MG) to the Jeans masses (MJ) for IRDCs, cores, and condensations, provides broad support for the idea of hierarchical fragmentation. The close proximity of multiple protostars of disparate mass indicates that these IRDCs are in the earliest evolutionary states in the formation of stellar clusters.

122 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed analysis of the kinematics within one IRDC, G035.39-00.33, was performed with the IRAM 30m antenna.
Abstract: Infrared Dark Clouds (IRDCs) host the initial conditions under which massive stars and stellar clusters form. We have obtained high sensitivity and high spectral resolution observations with the IRAM 30m antenna, which allowed us to perform detailed analysis of the kinematics within one IRDC, G035.39-00.33. We focus on the 1-0 and 3-2 transitions of N2H+, C18O (1-0), and make comparison with SiO (2-1) observations and extinction mapping. Three interacting filaments of gas are found. We report large-scale velocity coherence throughout the cloud, evidenced through small velocity gradients and relatively narrow line widths. This suggests that the merging of these filaments is somewhat "gentle", possibly regulated by magnetic fields. This merging of filaments may be responsible for the weak parsec-scale SiO emission detected by Jimenez-Serra et al. 2010, via grain mantle vaporization. A systematic velocity shift between the N2H+ (1-0) and C18O (1-0) gas throughout the cloud of 0.18 +/- 0.04 kms^{-1} is also found, consistent with a scenario of collisions between filaments which is still ongoing. The N2H+ (1-0) is extended throughout the IRDC and it does not only trace dense cores, as found in nearby low-mass star-forming regions. The average H2 number density across the IRDC is ~ 5 x 10^4 cm^{-3}, at least one order of magnitude larger than in nearby molecular clouds where low-mass stars are forming. A temperature gradient perpendicular to the filament is found. From our study, we conclude that G035.39-00.33 (clearly seen in the extinction map and in N2H+) has been formed via the collision between two relatively quiescent filaments with average densities of ~ 5 x 10^3 cm^{-3}, moving with relative velocities of ~ 5 kms^{-1}. The accumulation of material at the merging points started > 1 Myr ago and it is still ongoing.

114 citations

Journal ArticleDOI
TL;DR: In this article, the spectral energy distribution (SED) of the dust continuum was derived by analysing data from the 2MASS survey, HIRAS, MSX, the Spitzer Space Telescope, and interferometric 3mm observations.
Abstract: We report detection of moderate to high-mass star formation in an infrared dark cloud (G11.11-0.12) where we discovered class II methanol and water maser emissions at 6.7 GHz and 22.2 GHz, respectively. We also observed the object in ammonia inversion transitions. Strong emission from the (3,3) line indicates a hot (~60 K) compact component associated with the maser emission. The line width of the hot component (4 km/s), as well as the methanol maser detection, are indicative of high mass star formation. To further constrain the physical parameters of the source, we derived the spectral energy distribution (SED) of the dust continuum by analysing data from the 2MASS survey, HIRAS, MSX, the Spitzer Space Telescope, and interferometric 3mm observations. The SED was modelled in a radiative transfer program: a) the stellar luminosity equals 1200 L_sun corresponding to a ZAMS star of 8 M_sun; b) the bulk of the envelope has a temperature of 19 K; c) the mass of the remnant protostellar cloud in an area 8x10^17 cm or 15 arcsec across amounts to 500M_sun, if assuming standard dust of the diffuse medium, and to about 60 M_sun, should the grains be fluffy and have ice mantles; d) the corresponding visual extinction towards the star is a few hundred magnitudes. The near IR data can be explained by scattering from tenuous material above a hypothetical disk. The class II methanol maser lines are spread out in velocity over 11 km/s. To explain the kinematics of the masing spots, we propose that they are located in a Kepler disk at a distance of about 250 AU. The dust temperatures there are around 150 K, high enough to evaporate methanol--containing ice mantles.

110 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the annual parallax of the H2O maser source associated with an infrared dark cloud MSXDC G034.43+00.24 from the observations with VERA (VLBI Exploration of Radio Astrometry).
Abstract: We have measured the annual parallax of the H2O maser source associated with an infrared dark cloud MSXDC G034.43+00.24 from the observations with VERA (VLBI Exploration of Radio Astrometry). The parallax is 0.643±0.049 mas, corresponding to the distance of 1.56 −0.11 kpc. This value is less than the half of the previous kinematic distance of 3.7 kpc. We revise the core mass estimates of MSXDC G034.43+00.24, based on virial masses, LTE masses and dust masses and show that the core masses decrease from the previous estimations of ∼ 1000M⊙ to hundreds of M⊙. The spectral type derived from the luminosity also changes from O9.5 to B1 in the case of MM1. This spectral type is still consistent with that of the massive star. The radial velocity derived from the flat rotation model is smaller than the observed velocity, which corresponds to the peculiar motion of ∼ 40 km s in the line-of-sight direction.

108 citations


Network Information
Related Topics (5)
Star formation
37.4K papers, 1.8M citations
92% related
Galaxy
109.9K papers, 4.7M citations
92% related
Elliptical galaxy
20.9K papers, 1M citations
92% related
Active galactic nucleus
20.7K papers, 996.7K citations
92% related
Quasar
21.3K papers, 1M citations
91% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202110
202012
201920
201819
20174
201618