scispace - formally typeset
Search or ask a question
Topic

Inner mitochondrial membrane

About: Inner mitochondrial membrane is a research topic. Over the lifetime, 9488 publications have been published within this topic receiving 531020 citations.


Papers
More filters
Journal ArticleDOI
22 Nov 1990-Nature
TL;DR: It is demonstrated that Bcl-2 is an integral inner mitochondrial membrane protein of relative molecular mass 25,000 (25k) being localized to mitochondria and interfering with programmed cell death independent of promoting cell division.
Abstract: The t(14; 18) chromosomal translocation of human follicular B-cell lymphoma juxtaposes the bcl-2 gene with the immunoglobulin heavy chain locus. The bcl-2 immunoglobulin fusion gene is markedly deregulated resulting in inappropriately elevated levels of bcl-2 RNA and protein. Transgenic mice bearing a bcl-2 immunoglobulin minigene demonstrate a polyclonal expansion of resting yet responsive IgM-IgD B cells which display prolonged cell survival but no increase in cell cycling. Moreover, deregulated bcl-2 extends the survival of certain haematopoietic cell lines following growth-factor deprivation. By using immunolocalization studies we now demonstrate that Bcl-2 is an integral inner mitochondrial membrane protein of relative molecular mass 25,000 (25k). Overexpression of Bcl-2 blocks the apoptotic death of a pro-B-lymphocyte cell line. Thus, Bcl-2 is unique among proto-oncogenes, being localized to mitochondria and interfering with programmed cell death independent of promoting cell division.

3,773 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the mitochondrial rates of production and steady state levels of reactive oxygen species generated by mitochondria, or from other sites within or outside the cell, cause damage to mitochondrial components and initiate degradative processes.

2,787 citations

Journal ArticleDOI
TL;DR: MOMP typically leads to cell death irrespective of caspase activity by causing a progressive decline in mitochondrial function, although cells can survive this under certain circumstances, which may have pathophysiological consequences.
Abstract: Mitochondrial outer membrane permeabilization (MOMP) is often required for activation of the caspase proteases that cause apoptotic cell death. Various intermembrane space (IMS) proteins, such as cytochrome c, promote caspase activation following their mitochondrial release. As a consequence, mitochondrial outer membrane integrity is highly controlled, primarily through interactions between pro- and anti-apoptotic members of the B cell lymphoma 2 (BCL-2) protein family. Following MOMP by pro-apoptotic BCL-2-associated X protein (BAX) or BCL-2 antagonist or killer (BAK), additional regulatory mechanisms govern the mitochondrial release of IMS proteins and caspase activity. MOMP typically leads to cell death irrespective of caspase activity by causing a progressive decline in mitochondrial function, although cells can survive this under certain circumstances, which may have pathophysiological consequences.

2,219 citations

Journal ArticleDOI
12 Jun 1998-Science
TL;DR: The spatial relation between mitochondria and endoplasmic reticulum in living HeLa cells was analyzed at high resolution in three dimensions with two differently colored, specifically targeted green fluorescent proteins to emphasize the importance of cell architecture and the distribution of organelles in regulation of Ca2+ signaling.
Abstract: The spatial relation between mitochondria and endoplasmic reticulum (ER) in living HeLa cells was analyzed at high resolution in three dimensions with two differently colored, specifically targeted green fluorescent proteins. Numerous close contacts were observed between these organelles, and mitochondria in situ formed a largely interconnected, dynamic network. A Ca2+-sensitive photoprotein targeted to the outer face of the inner mitochondrial membrane showed that, upon opening of the inositol 1,4,5-triphosphate (IP3)-gated channels of the ER, the mitochondrial surface was exposed to a higher concentration of Ca2+ than was the bulk cytosol. These results emphasize the importance of cell architecture and the distribution of organelles in regulation of Ca2+ signaling.

2,129 citations

Journal ArticleDOI
TL;DR: The acquisition of the biochemical and ultrastructural features of apoptosis critically relies on the liberation of apoptogenic proteases or protease activators from mitochondria.
Abstract: Both physiological cell death (apoptosis) and, in some cases, accidental cell death (necrosis) involve a two-step process. At a first level, numerous physiological and some pathological stimuli trigger an increase in mitochondrial membrane permeability. The mitochondria release apoptogenic factors through the outer membrane and dissipate the electrochemical gradient of the inner membrane. Mitochondrial permeability transition (PT) involves a dynamic multiprotein complex formed in the contact site between the inner and outer mitochondrial membranes. The PT complex can function as a sensor for stress and damage, as well as for certain signals connected to receptors. Inhibition of PT by pharmacological intervention on mitochondrial structures or mitochondrial expression of the apoptosis-inhibitory oncoprotein Bcl-2 prevents cell death, suggesting that PT is a rate-limiting event of the death process. At a second level, the consequences of mitochondrial dysfunction (collapse of the mitochondrial inner transmembrane potential, uncoupling of the respiratory chain, hyperproduction of superoxide anions, disruption of mitochondrial biogenesis, outflow of matrix calcium and glutathione, and release of soluble intermembrane proteins) entails a bioenergetic catastrophe culminating in the disruption of plasma membrane integrity (necrosis) and/or the activation of specific apoptogenic proteases (caspases) by mitochondrial proteins that leak into the cytosol (cytochrome c, apoptosis-inducing factor) with secondary endonuclease activation (apoptosis). The relative rate of these two processes (bioenergetic catastrophe versus protease and endonuclease activation) determines whether a cell will undergo primary necrosis or apoptosis. The acquisition of the biochemical and ultrastructural features of apoptosis critically relies on the liberation of apoptogenic proteases or protease activators from mitochondria. The fact that mitochondrial events control cell death has major implications for the development of cytoprotective and cytotoxic drugs.

2,034 citations


Network Information
Related Topics (5)
Protein kinase A
68.4K papers, 3.9M citations
93% related
Phosphorylation
69.3K papers, 3.8M citations
91% related
Signal transduction
122.6K papers, 8.2M citations
89% related
Peptide sequence
84.1K papers, 4.3M citations
89% related
Transcription factor
82.8K papers, 5.4M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202369
2022142
2021346
2020378
2019298
2018311