scispace - formally typeset
Search or ask a question
Topic

Input offset voltage

About: Input offset voltage is a research topic. Over the lifetime, 15860 publications have been published within this topic receiving 160566 citations.


Papers
More filters
Journal ArticleDOI
01 Nov 1996
TL;DR: In this paper, some old and new circuit techniques are described for the compensation of the amplifier's most important nonideal effects including the noise (mainly thermal and 1/f noise), the input-referred dc offset voltage as well as the finite gain.
Abstract: In linear IC's fabricated in a low-voltage CMOS technology, the reduction of the dynamic range due to the dc offset and low frequency noise of the amplifiers becomes increasingly significant. Also, the achievable amplifier gain is often quite low in such a technology, since cascoding may not be a practical circuit option due to the resulting reduction of the output signal swing. In this paper, some old and some new circuit techniques are described for the compensation of the amplifier's most important nonideal effects including the noise (mainly thermal and 1/f noise), the input-referred dc offset voltage as well as the finite gain resulting in a nonideal virtual ground at the input.

1,889 citations

Proceedings ArticleDOI
18 Jun 2007
TL;DR: A latch-type voltage sense amplifier in 90nm CMOS is designed with a separated input and cross-coupled stage, which enables fast operation over a wide common-mode and supply voltage range as discussed by the authors.
Abstract: A latch-type voltage sense amplifier in 90nm CMOS is designed with a separated input and cross-coupled stage. This separation enables fast operation over a wide common-mode and supply voltage range. With a 1-sigma offset of 8mV, the circuit consumes 92fJ/decision with a 1.2V supply. It has an input equivalent noise of 1.5mV and requires 18ps setup-plus-hold time

587 citations

Journal ArticleDOI
01 Jan 1994
TL;DR: In this article, a two-stage, compact, power-efficient 3 V CMOS operational amplifier with rail-to-rail input and output ranges is presented, which is very suitable as a VLSI library cell.
Abstract: This paper presents a two-stage, compact, power-efficient 3 V CMOS operational amplifier with rail-to-rail input and output ranges. Because of its small die area of 0.04 mm/sup 2/, it is very suitable as a VLSI library cell. The floating class-AB control is shifted into the summing circuit, which results in a noise and offset of the amplifier which are comparable to that of a three stage amplifier. A floating current source biases the combined summing circuit and the class-AB control. This current source has the same structure as the class-AB control which provides a power-supply-independent quiescent current. Using the compact architecture, a 2.6 MHz amplifier with Miller compensation and a 6.4 MHz amplifier with cascoded-Miller compensation have been realized. The opamps have, respectively, a bandwidth-to-supply-power ratio of 4 MHz/mW and 11 MHz/mW for a capacitive load of 10 pF. >

485 citations

Journal ArticleDOI
TL;DR: In this paper, the impact of supply voltage, input DC level, transistor sizing, and temperature on the input offset voltage was investigated for a latch-type voltage sense amplifier with a high-impedance differential input stage.
Abstract: A quantitative yield analysis of a latch-type voltage sense amplifier with a high-impedance differential input stage is presented. It investigates the impact of supply voltage, input DC level, transistor sizing, and temperature on the input offset voltage. The input DC level turns out to be most significant. Also, an analytical expression for the sensing delay is derived which shows low sensitivity on the input DC bias voltage. A figure of merit indicates that an input dc level of 0.7 V/sub DD/ is optimal regarding speed and yield. Experimental results in 130-nm CMOS technology confirm that the yield can be significantly improved by lowering the input DC voltage to about 70% of the supply voltage. Thereby, the offset standard deviation decreases from 19 to 8.5 mV without affecting the delay.

450 citations

Patent
08 Aug 2002
TL;DR: In this article, a method of producing a diode drive current in an oximeter includes sensing at least a part of a current passing through the diode and converting the sensed current to a sensed voltage, inputting the sensed voltage to a feedback amplifier for stabilizing the current passed through the device, and eliminating an offset voltage across inputs of the feedback amplifier.
Abstract: A method of producing a diode drive current in an oximeter includes sensing at least a part of a current passing through the diode and converting the sensed current to a sensed voltage, inputting the sensed voltage to a feedback amplifier for stabilizing the current passing through the diode, and eliminating an offset voltage across inputs of the feedback amplifier. A pulse oximeter includes a diode for emitting light flashes, a feedback amplifier having inputs, a feedback capacitor, and an output, the feedback amplifier stabilizing a current passing through the diode, a nulling amplifier having inputs, a nulling capacitor, and an output, the nulling amplifier charging and discharging the feedback capacitor until the inputs of the feedback amplifier are at a same voltage. The operation may include synchronizing an elimination of input offset voltages of the feedback and nulling amplifiers with on or off state of diode current.

422 citations


Network Information
Related Topics (5)
CMOS
81.3K papers, 1.1M citations
92% related
Capacitor
166.6K papers, 1.4M citations
89% related
Integrated circuit
82.7K papers, 1M citations
89% related
Amplifier
163.9K papers, 1.3M citations
89% related
Electronic circuit
114.2K papers, 971.5K citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202333
202263
202174
2020122
2019159
2018193