scispace - formally typeset
Search or ask a question
Topic

Insulator (electricity)

About: Insulator (electricity) is a research topic. Over the lifetime, 15941 publications have been published within this topic receiving 108950 citations. The topic is also known as: electrical insulator.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the transition from the metallic regime to the dielectric regime (10−50 A size isolated metal particles in an insulator continuum) is associated with the breaking up of a metal, where the volume fraction of metal, x, was varied from x = 1 to x = 0.05.
Abstract: Granular metal films (50–200,000 A thick) were prepared by co-sputtering metals (Ni, Pt, Au) and insulators (SiO2, Al2O3), where the volume fraction of metal, x, was varied from x = 1 to x = 0.05. The materials were characterized by electron micrography, electron and X-ray diffraction, and measurements of composition, density and electrical resistivity at electric fields e up to 106 V/cm and temperatures T in the range of 1.3 to 291 K. In the metallic regime (isolated insulator particles in a metal continuum) and in the transition regime (metal and insulator particles in a metal continuum) and in the transition regime (metal and insulator labyrinth structure) the conduction is due to percolation with a percolation threshold at x⋍0.5. Tunnelling measurements on superconductor-insulator-granular metal junctions reveals that the transition from the metallic regime to the dielectric regime (10–50 A size isolated metal particles in an insulator continuum) is associated with the breaking up of a metal ...

1,088 citations

Patent
06 Aug 2007
TL;DR: A thin-film device includes a first electrical insulator, an oxide-semiconductor film formed on the first electrical, and a second electrical, forming an active layer as mentioned in this paper, which is defined as the oxide-smiconductor material defining an active surface.
Abstract: A thin-film device includes a first electrical insulator, an oxide-semiconductor film formed on the first electrical insulator, and a second electrical insulator formed on the oxide-semiconductor film, the oxide-semiconductor film defining an active layer. The oxide-semiconductor film is comprised of a first interface layer located at an interface with the first electrical insulating insulator, a second interface layer located at an interface with the second electrical insulator, and a bulk layer other than the first and second interface layers. A density of oxygen holes in at least one of the first and second interlayer layers is smaller than a density of oxygen holes in the bulk layer.

1,020 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the magnetic insulator LaY(2)Fe(5)O(12) can convert a heat flow into a spin voltage, which can then be converted into an electric voltage as a result of the inverse spin Hall effect.
Abstract: Thermoelectric generation is an essential function in future energy-saving technologies. However, it has so far been an exclusive feature of electric conductors, a situation which limits its application; conduction electrons are often problematic in the thermal design of devices. Here we report electric voltage generation from heat flowing in an insulator. We reveal that, despite the absence of conduction electrons, the magnetic insulator LaY(2)Fe(5)O(12) can convert a heat flow into a spin voltage. Attached Pt films can then transform this spin voltage into an electric voltage as a result of the inverse spin Hall effect. The experimental results require us to introduce a thermally activated interface spin exchange between LaY(2)Fe(5)O(12) and Pt. Our findings extend the range of potential materials for thermoelectric applications and provide a crucial piece of information for understanding the physics of the spin Seebeck effect.

1,011 citations

Journal ArticleDOI
TL;DR: In this paper, the electronic structure of silicene and the stability of its weakly buckled honeycomb lattice in an external electric field oriented perpendicular to the monolayer of Si atoms were analyzed.
Abstract: We report calculations of the electronic structure of silicene and the stability of its weakly buckled honeycomb lattice in an external electric field oriented perpendicular to the monolayer of Si atoms. The electric field produces a tunable band gap in the Dirac-type electronic spectrum, the gap being suppressed by a factor of about eight by the high polarizability of the system. At low electric fields, the interplay between this tunable band gap, which is specific to electrons on a honeycomb lattice, and the Kane-Mele spin-orbit coupling induces a transition from a topological to a band insulator, whereas at much higher electric fields silicene becomes a semimetal.

969 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed recent progress in the understanding of insulator/semiconductor interfaces in organic field effect transistors (OFETs) and emphasized that the choice of gate insulator is as important for high-quality OFET devices as the semiconductor itself, especially because of the unique transport mechanisms operating in them.
Abstract: In this paper, we review recent progress in the understanding of insulator/semiconductor interfaces in organic field-effect transistors (OFETs). We would like to emphasize that the choice of gate insulator is as important for high-quality OFET devices as the semiconductor itself, especially because of the unique transport mechanisms operating in them. To date researchers have explored numerous organic and inorganic insulator materials, some of them designed to improve the morphology of the organic semiconductor (OSC). Surface treatments, particularly on inorganic insulators, have been shown to influence significantly molecular ordering and device performance. In addition, the deposition technique used for the insulator and semiconductor layers has a further impact on the active interface. Dielectric related effects are reviewed here for a variety of polymeric and molecular semiconductors reported in the literature, with an emphasis on electronic transport. We also review in more detail experiences at Phil...

883 citations


Network Information
Related Topics (5)
Voltage
296.3K papers, 1.7M citations
89% related
Dielectric
169.7K papers, 2.7M citations
86% related
Thin film
275.5K papers, 4.5M citations
82% related
Silicon
196K papers, 3M citations
80% related
Band gap
86.8K papers, 2.2M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023368
2022892
2021224
2020478
2019561
2018629