scispace - formally typeset
Search or ask a question
Topic

Insulin

About: Insulin is a research topic. Over the lifetime, 124295 publications have been published within this topic receiving 5129734 citations. The topic is also known as: human insulin.


Papers
More filters
Journal ArticleDOI
TL;DR: CLA effects on glucose tolerance and glucose homeostasis indicate that dietary CLA may prove to be an important therapy for the prevention and treatment of NIDDM.

669 citations

Journal ArticleDOI
TL;DR: Early after Gastric bypass surgery, the greater GLP-1 and GIP release and improvement of incretin effect are related not to weight loss but rather to the surgical procedure, which could be responsible for better diabetes outcome after GBP.
Abstract: Context: Gastric bypass surgery (GBP) results in rapid weight loss, improvement of type 2 diabetes (T2DM), and increase in incretins levels. Diet-induced weight loss also improves T2DM and may increase incretin levels. Objective: Our objective was to determine whether the magnitude of the change of the incretin levels and effect is greater after GBP compared with a low caloric diet, after equivalent weight loss. Design and Methods: Obese women with T2DM studied before and 1 month after GBP (n = 9), or after a diet-induced equivalent weight loss (n = 10), were included in the study. Patients from both groups were matched for age, body weight, body mass index, diabetes duration and control, and amount of weight loss. Setting: This outpatient study was conducted at the General Clinical Research Center. Main Outcome Measures: Glucose, insulin, proinsulin, glucagon, gastric inhibitory peptide (GIP), and glucagon-like peptide (GLP)-1 levels were measured after 50-g oral glucose. The incretin effect was measured...

667 citations

Journal ArticleDOI
TL;DR: Hyperinsulinemia is often both a result and a driver of insulin resistance, and situations where insulin itself appears to be a proximate and important quantitative contributor to insulin resistance are examined.
Abstract: Insulin resistance, recently recognized as a strong predictor of disease in adults, has become the leading element of the metabolic syndrome and renewed as a focus of research. The condition exists when insulin levels are higher than expected relative to the level of glucose. Thus, insulin resistance is by definition tethered to hyperinsulinemia. The rising prevalence of medical conditions where insulin resistance is common has energized research into the causes. Many causes and consequences have been identified, but the direct contributions of insulin itself in causing or sustaining insulin resistance have received little sustained attention. We examine situations where insulin itself appears to be a proximate and important quantitative contributor to insulin resistance. 1) Mice transfected with extra copies of the insulin gene produce basal and stimulated insulin levels that are two to four times elevated. The mice are of normal weight but show insulin resistance, hyperglycemia, and hypertriglyceridemia. 2) Somogyi described patients with unusually high doses of insulin and hyperglycemia. Episodes of hypoglycemia with release of glucose-raising hormones, postulated as the culprits in early studies, have largely been excluded by studies including continuous glucose monitoring. 3) Rats and humans treated with escalating doses of insulin show both hyperinsulinemia and insulin resistance. 4) The pulsatile administration of insulin (rather than continuous) results in reduced requirements for insulin. 5) Many patients with insulinoma who have elevated basal levels of insulin have reduced (but not absent) responsiveness to administered insulin. In summary, hyperinsulinemia is often both a result and a driver of insulin resistance.

666 citations

Journal ArticleDOI
01 May 1996-Diabetes
TL;DR: Abdominal fat had a significantly stronger relationship with insulin sensitivity than peripheral nonabdominalfat, and higher levels were associated with increased fasting nonesterified fatty acids, lipid oxidation, and hepatic glucose output, which may be a major determinant of insulin resistance in women.
Abstract: Insulin resistance appears to be central to obesity, NIDDM, hyperlipidemia, and cardiovascular disease. While obese women with abdominal (android) fat distribution are more insulin resistant than those with peripheral (gynecoid) obesity, in nonobese women, the relationship between abdominal fat and insulin resistance is unknown. By measuring regional adiposity with dual-energy X-ray absorptiometry and insulin sensitivity by euglycemic-hyperinsulinemic clamp in 22 healthy women, with a mean +/- SE body BMI of 26.7 +/- 0.9 kg/m2 and differing risk factors for NIDDM, we found a strong negative relationship between central abdominal (intra-abdominal plus abdominal subcutaneous) fat and whole-body insulin sensitivity (r = -0.89, P < 0.0001) and nonoxidative glucose disposal (r = -0.77, P < 0.001), independent of total adiposity, family history of NIDDM, and past gestational diabetes. There was a large variation in insulin sensitivity, with a similar variation in central fat, even in those whose BMI was <25 kg/m2. Abdominal fat had a significantly stronger relationship with insulin sensitivity than peripheral nonabdominal fat (r2 = 0.79 vs. 0.44), and higher levels were associated with increased fasting nonesterified fatty acids, lipid oxidation, and hepatic glucose output. Because 79% of the variance in insulin sensitivity in this heterogeneous population was accounted for by central fat, abdominal adiposity appears to be a strong marker and may be a major determinant of insulin resistance in women.

665 citations

Journal ArticleDOI
David E. Moller1
TL;DR: Current evidence suggests that administration of exogenous TNF-alpha to animals can induce insulin resistance, whereas neutralization of T NF-alpha can improve insulin sensitivity, and it is still probable that TTF-alpha is a contributing factor in common metabolic disturbances such as insulin resistance and dyslipidemia.
Abstract: Tumor necrosis factor alpha (TNF-alpha) has well-described effects on lipid metabolism in the context of acute inflammation, as in sepsis. Recently, increased TNF-alpha production has been observed in adipose tissue derived from obese rodents or human subjects and TNF-alpha has been implicated as a causative factor in obesity-associated insulin resistance and the pathogenesis of type 2 diabetes. Thus, current evidence suggests that administration of exogenous TNF-alpha to animals can induce insulin resistance, whereas neutralization of TNF-alpha can improve insulin sensitivity. Importantly, results from knockout mice deficient in TNF-alpha or its receptors have suggested that TNF-alpha has a role in regulating in vivo insulin sensitivity. However, the absence of TNF-alpha action might only partially protect against obesity-induced insulin resistance in mice. Multiple mechanisms have been suggested to account for these metabolic effects of TNF-alpha. These include the downregulation of genes that are required for normal insulin action, direct effects on insulin signaling, induction of elevated free fatty acids via stimulation of lipolysis, and negative regulation of PPAR gamma, an important insulin-sensitizing nuclear receptor. Although current evidence suggests that neutralizing TNF-alpha in type 2 diabetic subjects is not sufficient to cause metabolic improvement, it is still probable that TNF-alpha is a contributing factor in common metabolic disturbances such as insulin resistance and dyslipidemia.

665 citations


Network Information
Related Topics (5)
Insulin resistance
82.4K papers, 3.8M citations
95% related
Diabetes mellitus
169.2K papers, 6M citations
94% related
Type 2 diabetes
69.6K papers, 3M citations
93% related
Adipose tissue
54.6K papers, 2.5M citations
91% related
Blood pressure
139.2K papers, 4.2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
20232,520
20225,252
20213,164
20203,368
20193,376