scispace - formally typeset
Search or ask a question
Topic

Insulin

About: Insulin is a research topic. Over the lifetime, 124295 publications have been published within this topic receiving 5129734 citations. The topic is also known as: human insulin.


Papers
More filters
Journal ArticleDOI
01 Nov 2000-Diabetes
TL;DR: The results suggest that IRS-1 and IRS-2 may play different roles in the regulation of beta-cell mass and the function of individual beta-cells.
Abstract: To investigate the role of insulin receptor substrate (IRS)-2 in vivo, we generated IRS-2-deficient mice by gene targeting. Although homozygous IRS-2-deficient mice (IRS-2-/- mice) had a body weight similar to wild-type mice, they progressively developed type 2 diabetes at 10 weeks. IRS-2-/- mice showed insulin resistance and a defect in the insulin-stimulated signaling pathway in liver but not in skeletal muscle. Despite insulin resistance, the amount of beta-cells was reduced to 83% of that in wild-type mice, which was in marked contrast to the 85% increase in the amount of beta-cells in IRS-1-deficient mice (IRS-1-/- mice) to compensate for insulin resistance. Thus, IRS-2 plays a crucial role in the regulation of beta-cell mass. On the other hand, insulin secretion by the same number of cells in response to glucose measured ex vivo was significantly increased in IRS-2-/- mice compared with wild-type mice but was decreased in IRS-1-/- mice. These results suggest that IRS-1 and IRS-2 may play different roles in the regulation of beta-cell mass and the function of individual beta-cells.

509 citations

Journal ArticleDOI
01 Jul 2007-Diabetes
TL;DR: Findings suggest that H2O2 derived from glucose metabolism is one of the metabolic signals for insulin secretion, whereas oxidative stress may disturb its signaling function.
Abstract: One of the unique features of beta-cells is their relatively low expression of many antioxidant enzymes. This could render beta-cells susceptible to oxidative damage but may also provide a system that is sensitive to reactive oxygen species as signals. In isolated mouse islets and INS-1(832/13) cells, glucose increases intracellular accumulation of H2O2. In both models, insulin secretion could be stimulated by provision of either exogenous H2O2 or diethyl maleate, which raises intracellular H2O2 levels. Provision of exogenous H2O2 scavengers, including cell permeable catalase and N-acetyl-L-cysteine, inhibited glucose-stimulated H2O2 accumulation and insulin secretion (GSIS). In contrast, cell permeable superoxide dismutase, which metabolizes superoxide into H2O2, had no effect on GSIS. Because oxidative stress is an important risk factor for beta-cell dysfunction in diabetes, the relationship between glucose-induced H2O2 generation and GSIS was investigated under various oxidative stress conditions. Acute exposure of isolated mouse islets or INS-1(832/13) cells to oxidative stressors, including arsenite, 4-hydroxynonenal, and methylglyoxal, led to decreased GSIS. This impaired GSIS was associated with increases in a battery of endogenous antioxidant enzymes. Taken together, these findings suggest that H2O2 derived from glucose metabolism is one of the metabolic signals for insulin secretion, whereas oxidative stress may disturb its signaling function.

509 citations

Journal ArticleDOI
TL;DR: A vasoregulatory role is proposed for local deposits of fat around the origin of arterioles supplying skeletal muscle in obese rats and a homology between this vasoactive periarteriolar fat and both peri arterial and visceral fat is suggested, which may explain relations between visceral fat, insulin resistance, and vascular disease.

508 citations

Journal ArticleDOI
01 Sep 2010-Diabetes
TL;DR: Sleep restriction (5 h/night) for 1 week significantly reduces insulin sensitivity, raising concerns about effects of chronic insufficient sleep on disease processes associated with insulin resistance.
Abstract: Objective: Short sleep duration is associated with impaired glucose tolerance and an increased risk of diabetes. The effects of sleep restriction on insulin sensitivity have not been established. This study tests the hypothesis that decreasing nighttime sleep duration reduces insulin sensitivity and assesses the effects of a drug, modafinil, that increases alertness during wakefulness. Research Design and Methods: This twelve-day, inpatient General Clinical Research Center study included twenty healthy men (age 20-35 years, BMI 20-30 kg/m 2 ). Subjects spent 10 hours/night in bed for ≥8 nights including 3 inpatient nights (sleep-replete condition), followed by 5 hours/night of time in bed for 7 nights (sleep-restricted condition). Subjects received modafinil (300 mg/day) or placebo during sleep restriction. Diet and activity were controlled. On the last two days of each condition we assessed glucose metabolism by intravenous glucose tolerance test (IVGTT) and euglycemic hyperinsulinemic clamp. Salivary cortisol, 24-hr urinary catecholamines, and neurobehavioral performance were measured. Results: IVGTT-derived insulin sensitivity was reduced 20 ± 24% (mean±SD) after sleep restriction (p=0.001), without significant alterations in the insulin secretory response. Similarly, insulin sensitivity assessed by clamp was reduced 11±5.5% (p Conclusion: Sleep restriction (5 hrs/night) for one week significantly reduces insulin sensitivity, raising concerns about effects of chronic insufficient sleep on disease processes associated with insulin resistance.

508 citations


Network Information
Related Topics (5)
Insulin resistance
82.4K papers, 3.8M citations
95% related
Diabetes mellitus
169.2K papers, 6M citations
94% related
Type 2 diabetes
69.6K papers, 3M citations
93% related
Adipose tissue
54.6K papers, 2.5M citations
91% related
Blood pressure
139.2K papers, 4.2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
20232,520
20225,252
20213,164
20203,368
20193,376