scispace - formally typeset
Search or ask a question
Topic

Insulin

About: Insulin is a research topic. Over the lifetime, 124295 publications have been published within this topic receiving 5129734 citations. The topic is also known as: human insulin.


Papers
More filters
Journal ArticleDOI
01 Dec 1999-Diabetes
TL;DR: It is reported that exendin-4, a long-acting GLP-I agonist, stimulates both the differentiation of beta-cells from ductal progenitor cells (neogenesis) and proliferation of Beta-cells when administered to rats and holds promise as a novel therapy to stimulate beta-cell growth and differentiation when administer to diabetic individuals with reduced beta- cell mass.
Abstract: Diabetes is a disease of increasing prevalence in the general population and of unknown cause. Diabetes is manifested as hyperglycemia due to a relative deficiency of the production of insulin by the pancreatic beta-cells. One determinant in the development of diabetes is an inadequate mass of beta-cells, either absolute (type 1, juvenile diabetes) or relative (type 2, maturity-onset diabetes). Earlier, we reported that the intestinal hormone glucagon-like peptide I (GLP-I) effectively augments glucose-stimulated insulin secretion. Here we report that exendin-4, a long-acting GLP-I agonist, stimulates both the differentiation of beta-cells from ductal progenitor cells (neogenesis) and proliferation of beta-cells when administered to rats. In a partial pancreatectomy rat model of type 2 diabetes, the daily administration of exendin-4 for 10 days post-pancreatectomy attenuates the development of diabetes. We show that exendin-4 stimulates the regeneration of the pancreas and expansion of beta-cell mass by processes of both neogenesis and proliferation of beta-cells. Thus, GLP-I and analogs thereof hold promise as a novel therapy to stimulate beta-cell growth and differentiation when administered to diabetic individuals with reduced beta-cell mass.

1,253 citations

Journal ArticleDOI
TL;DR: These findings provide unequivocal evidence for hepatic resistance to insulin, and this evidence is substantiated by an impaired ability of insulin to suppress hepatic glucose production, which is the major determinant of the mean day-long blood glucose level.
Abstract: Type 2 diabetes mellitus is a chronic metabolic disorder that results from defects in both insulin secretion and insulin action. An elevated rate of basal hepatic glucose production in the presence of hyperinsulinemia is the primary cause of fasting hyperglycemia; after a meal, impaired suppression of hepatic glucose production by insulin and decreased insulin-mediated glucose uptake by muscle contribute almost equally to postprandial hyperglycemia. In the United States, five classes of oral agents, each of which works through a different mechanism of action, are currently available to improve glycemic control in patients with type 2 diabetes. The recently completed United Kingdom Prospective Diabetes Study (UKPDS) has shown that type 2 diabetes mellitus is a progressive disorder that can be treated initially with oral agent monotherapy but will eventually require the addition of other oral agents, and that in many patients, insulin therapy will be needed to achieve targeted glycemic levels. In the UKPDS, improved glycemic control, irrespective of the agent used (sulfonylureas, metformin, or insulin), decreased the incidence of microvascular complications (retinopathy, neuropathy, and nephropathy). This review examines the goals of antihyperglycemic therapy and reviews the mechanism of action, efficacy, nonglycemic benefits, cost, and safety profile of each of the five approved classes of oral agents. A rationale for the use of these oral agents as monotherapy, in combination with each other, and in combination with insulin is provided.

1,249 citations

Journal ArticleDOI
TL;DR: It is concluded that insulin resistance and its associated abnormalities are of utmost importance in the pathogenesis of NIDDM, hypertension, and coronary heart disease.
Abstract: The ability of insulin to stimulate glucose uptake varies widely from person to person, and these differences, as well as how the individual attempts to compensate for them, are of fundamental importance in the development and clinical course of what are often designated as diseases of Western civilization. Evidence is presented that non-insulin-dependent diabetes mellitus (NIDDM) results from a failure on the part of pancreatic beta-cells to compensate adequately for the defect in insulin action in insulin-resistant individuals. In addition, a coherent formulation of the physiological changes that lead from the defect in cellular insulin action to the loss in glucose homeostasis is presented. However, the ability to maintain the degree of compensatory hyperinsulinemia necessary to prevent loss of glucose tolerance in insulin-resistant individuals does not represent an unqualified homeostatic victory. In contrast, evidence is presented supporting the view that the combination of insulin resistance and compensatory hyperinsulinemia predisposes to the development of a cluster of abnormalities, including some degree of glucose intolerance, an increase in plasma triglyceride and a decrease in high-density lipoprotein cholesterol concentrations, high blood pressure, hyperuricemia, smaller denser low-density lipoprotein particles, and higher circulating levels of plaminogen activator inhibitor 1. The cluster of changes associated with insulin resistance has been said to comprise syndrome X, and all of the manifestations of syndrome X have been shown to increase risk of coronary heart disease. Thus it is concluded that insulin resistance and its associated abnormalities are of utmost importance in the pathogenesis of NIDDM, hypertension, and coronary heart disease.

1,244 citations

Journal ArticleDOI
TL;DR: This review discusses recent advances in understanding the mechanisms by which insulin promotes the uptake of glucose into cells and its applications in medicine and sport.
Abstract: Insulin was discovered more than 75 years ago, but only recently have we begun to understand the mechanisms by which insulin promotes the uptake of glucose into cells. This review discusses recent ...

1,243 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the state of the science since the last review in the Endocrine Reviews in 1997, and concluded that obese women with PCOS are insulin resistant, but some groups of lean affected women may have normal insulin sensitivity.
Abstract: Polycystic ovary syndrome (PCOS) is now recognized as an important metabolic as well as reproductive disorder conferring substantially increased risk for type 2 diabetes. Affected women have marked insulin resistance, independent of obesity. This article summarizes the state of the science since we last reviewed the field in the Endocrine Reviews in 1997. There is general agreement that obese women with PCOS are insulin resistant, but some groups of lean affected women may have normal insulin sensitivity. There is a post-binding defect in receptor signaling likely due to increased receptor and insulin receptor substrate-1 serine phosphorylation that selectively affects metabolic but not mitogenic pathways in classic insulin target tissues and in the ovary. Constitutive activation of serine kinases in the MAPK-ERK pathway may contribute to resistance to insulin's metabolic actions in skeletal muscle. Insulin functions as a co-gonadotropin through its cognate receptor to modulate ovarian steroidogenesis. Ge...

1,241 citations


Network Information
Related Topics (5)
Insulin resistance
82.4K papers, 3.8M citations
95% related
Diabetes mellitus
169.2K papers, 6M citations
94% related
Type 2 diabetes
69.6K papers, 3M citations
93% related
Adipose tissue
54.6K papers, 2.5M citations
91% related
Blood pressure
139.2K papers, 4.2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
20232,520
20225,252
20213,164
20203,368
20193,376