scispace - formally typeset
Search or ask a question
Topic

Insulin

About: Insulin is a research topic. Over the lifetime, 124295 publications have been published within this topic receiving 5129734 citations. The topic is also known as: human insulin.


Papers
More filters
Journal ArticleDOI
TL;DR: Treatment with hOKT3gamma1(Ala-Ala) mitigates the deterioration in insulin production and improves metabolic control during the first year of type 1 diabetes mellitus in the majority of patients.
Abstract: Background Type 1 diabetes mellitus is a chronic autoimmune disease caused by the pathogenic action of T lymphocytes on insulin-producing beta cells. Previous clinical studies have shown that continuous immune suppression temporarily slows the loss of insulin production. Preclinical studies suggested that a monoclonal antibody against CD3 could reverse hyperglycemia at presentation and induce tolerance to recurrent disease. Methods We studied the effects of a nonactivating humanized monoclonal antibody against CD3 — hOKT3γ1(Ala-Ala) — on the loss of insulin production in patients with type 1 diabetes mellitus. Within 6 weeks after diagnosis, 24 patients were randomly assigned to receive either a single 14-day course of treatment with the monoclonal antibody or no antibody and were studied during the first year of disease. Results Treatment with the monoclonal antibody maintained or improved insulin production after one year in 9 of the 12 patients in the treatment group, whereas only 2 of the 12 controls ...

1,147 citations

Journal ArticleDOI
TL;DR: Evidence emerged suggesting that human diabetes mellitus has a multifactorial etiology, and larger doses of insulin were required to normalize the blood sugar in patients with the milder nonketotic form of the disease common in the older population, whereas smaller doses were adequate for younger, ketosis-prone diabetics.
Abstract: I. Origin of the Insulin Sensitivity Concept HISTORICALLY, the study of the pathogenesis of diabetes mellitus was in the traditional pattern of endocrinology: removal of the pancreas led to experimental diabetes, and administration of insulin, a pancreatic isolate, ameliorated the diabetic symptoms (1, 2). These observations led to the widely held belief that human diabetes was primarily a disease of the pancreas, characterized by the inability of the B cell to secrete sufficient insulin to control glycemia. After insulin became available, evidence emerged suggesting that human diabetes mellitus has a multifactorial etiology. Early investigators identified an unexpected variability among diabetics in the ability of injected insulin to ameliorate hyperglycemia (3–5). Larger doses of insulin were required to normalize the blood sugar in patients with the milder nonketotic form of the disease common in the older population, whereas smaller doses were adequate for younger, ketosis-prone diabetics.

1,146 citations

Journal ArticleDOI
TL;DR: Insulin resistance in muscle contributes to the altered fat metabolism associated with type 2 diabetes, but tissues other than muscle appear to be more involved in insulin-regulated glucose disposal than previously recognized.

1,145 citations

Journal ArticleDOI
TL;DR: The results suggest that elevated MCP-1 may induce adipocyte dedifferentiation and contribute to pathologies associated with hyperinsulinemia and obesity, including type II diabetes.
Abstract: This study identifies monocyte chemoattractant protein 1 (MCP-1) as an insulin-responsive gene. It also shows that insulin induces substantial expression and secretion of MCP-1 both in vitro in insulin-resistant (IR) 3T3-L1 adipocytes and in vivo in IR obese mice (ob/ob). Thus, MCP-1 resembles other previously described genes (e.g., PAI-1 and SREBP-1c) that remain sensitive to insulin in IR states. The hyperinsulinemia that frequently accompanies obesity and insulin resistance may therefore contribute to the altered expression of these and other genes in insulin target tissues. In vivo studies also demonstrate that MCP-1 is overexpressed in obese mice compared with their lean controls, and that white adipose tissue is a major source of MCP-1. The elevated MCP-1 may alter adipocyte function because addition of MCP-1 to differentiated adipocytes in vitro decreases insulin-stimulated glucose uptake and the expression of several adipogenic genes (LpL, adipsin, GLUT-4, aP2, beta3-adrenergic receptor, and peroxisome proliferator-activated receptor gamma). These results suggest that elevated MCP-1 may induce adipocyte dedifferentiation and contribute to pathologies associated with hyperinsulinemia and obesity, including type II diabetes.

1,143 citations

Journal ArticleDOI
TL;DR: The ability of adiponectin to increase insulin sensitivity in conjunction with its anti-inflammatory and anti-atherogenic properties have made this novel adipocytokine a promising therapeutic tool for the future, with potential applications in states associated with low plasma adiponECTin levels.
Abstract: Adiponectin, also called GBP-28, apM1, AdipoQ and Acrp30, is a novel adipose tIssue-specific protein that has structural homology to collagen VIII and X and complement factor C1q, and that circulates in human plasma at high levels. It is one of the physiologically active polypeptides secreted by adipose tIssue, whose multiple functions have started to be understood in the last few Years.A reduction in adiponectin expression is associated with insulin resistance in some animal models. Administration of adiponectin has been accompanied by a reduction in plasma glucose and an increase in insulin sensitivity. In addition, thiazolidinediones, drugs that enhance insulin sensitivity through stimulation of the peroxisome proliferator-activated receptor-gamma, increase plasma adiponectin and mRNA levels in mice. On the other hand, this adipocyte protein seems to play a protective role in experimental models of vascular injury. In humans, adiponectin levels are inversely related to the degree of adiposity and positively associated with insulin sensitivity both in healthy subjects and in diabetic patients. Plasma adiponectin levels have been reported to be decreased in some insulin-resistant states, such as obesity and type 2 diabetes mellitus, and also in patients with coronary artery disease. On the contrary, chronic renal failure, type 1 diabetes and anorexia nervosa are associated with increased plasma adiponectin levels. Concentrations of plasma adiponectin have been shown to correlate negatively with glucose, insulin, triglyceride levels and body mass index, and positively with high-density lipoprotein-cholesterol levels and insulin-stimulated glucose disposal. Weight loss and therapy with thiazolidinediones increased endogenous adiponectin production in humans. Adiponectin increases insulin sensitivity by increasing tIssue fat oxidation, resulting in reduced circulating fatty acid levels and reduced intracellular triglyceride contents in liver and muscle. This protein also suppresses the expression of adhesion molecules in vascular endothelial cells and cytokine production from macrophages, thus inhibiting the inflammatory processes that occur during the early phases of atherosclerosis. In view of these data, it is possible that hypoadiponectinemia may play a role in the development of atherosclerotic vascular disease. In summary, the ability of adiponectin to increase insulin sensitivity in conjunction with its anti-inflammatory and anti-atherogenic properties have made this novel adipocytokine a promising therapeutic tool for the future, with potential applications in states associated with low plasma adiponectin levels.

1,142 citations


Network Information
Related Topics (5)
Insulin resistance
82.4K papers, 3.8M citations
95% related
Diabetes mellitus
169.2K papers, 6M citations
94% related
Type 2 diabetes
69.6K papers, 3M citations
93% related
Adipose tissue
54.6K papers, 2.5M citations
91% related
Blood pressure
139.2K papers, 4.2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
20232,520
20225,252
20213,164
20203,368
20193,376