scispace - formally typeset
Search or ask a question
Topic

Insulin

About: Insulin is a research topic. Over the lifetime, 124295 publications have been published within this topic receiving 5129734 citations. The topic is also known as: human insulin.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that human subcutaneous adipose cells, like 3T3-L1 cells, are target cells for IL-6 and that it may act in concert with other cytokines that also are up-regulated in adipose Cells in insulin resistance.

1,046 citations

Journal ArticleDOI
TL;DR: Short-term treatment with CD3 antibody preserves residual beta-cell function for at least 18 months in patients with recent-onset type 1 diabetes, as suggested by the results of a phase 1 study.
Abstract: background Type 1 diabetes mellitus is a T-cell–mediated autoimmune disease that leads to a major loss of insulin-secreting beta cells. The further decline of beta-cell function after clinical onset might be prevented by treatment with CD3 monoclonal antibodies, as suggested by the results of a phase 1 study. To provide proof of this therapeutic principle at the metabolic level, we initiated a phase 2 placebo-controlled trial with a humanized antibody, an aglycosylated human IgG1 antibody directed against CD3 (ChAglyCD3). methods In a multicenter study, 80 patients with new-onset type 1 diabetes were randomly assigned to receive placebo or ChAglyCD3 for six consecutive days. Patients were followed for 18 months, during which their daily insulin needs and residual beta-cell function were assessed according to glucose-clamp–induced C-peptide release before and after the administration of glucagon. results At 6, 12, and 18 months, residual beta-cell function was better maintained with ChAglyCD3 than with placebo. The insulin dose increased in the placebo group but not in the ChAglyCD3 group. This effect of ChAglyCD3 was most pronounced among patients with initial residual beta-cell function at or above the 50th percentile of the 80 patients. In this subgroup, the mean insulin dose at 18 months was 0.22 IU per kilogram of body weight per day with ChAglyCD3, as compared with 0.61 IU per kilogram with placebo (P<0.001). In this subgroup, 12 of 16 patients who received ChAglyCD3 (75 percent) received minimal doses of insulin (≤0.25 IU per kilogram per day) as compared with none of the 21 patients who received placebo. Administration of ChAglyCD3 was associated with a moderate “flu-like” syndrome and transient symptoms of Epstein–Barr viral mononucleosis. conclusions Short-term treatment with CD3 antibody preserves residual beta-cell function for at least 18 months in patients with recent-onset type 1 diabetes.

1,043 citations

Journal ArticleDOI
01 Dec 1989-Diabetes
TL;DR: The proposed model of insulin/C-peptide kinetics, derived from the original conception of Eaton and Polonsky, suggests that in healthy individuals, there is a balance between secretion and insulin action such that insulin secretion × insulin sensitivity = constant, and supports the concept that, at physiological insulin levels, the time for insulin to cross the capillary endothelium is the process that determines the rate of insulin action in vivo.
Abstract: Glucose tolerance depends on a complex interaction among insulin secretion from the beta-cells, clearance of the hormone, and the actions of insulin to accelerate glucose disappearance and inhibit endogenous glucose production. An additional factor, less well recognized, is the ability of glucose per se, independent of changes in insulin, to increase glucose uptake and suppress endogenous output (glucose effectiveness). These factors can be measured in the intact organism with physiologically based minimal models of glucose utilization and insulin kinetics. With the glucose minimal model, insulin sensitivity (SI) and glucose effectiveness (SG) are measured by computer analysis of the frequently sampled intravenous glucose tolerance test. The test involves intravenous injection of glucose followed by tolbutamide or insulin and frequent blood sampling. SI varied from a high of 7.6 x 10(-4) min-1.microU-1.ml-1 in young Whites to 2.3 x 10(-4) min-1.microU-1.ml-1 in obese nondiabetic subjects; in all of the nondiabetic subjects, SG was normal. In subjects with non-insulin-dependent diabetes mellitus (NIDDM), not only was SI reduced 90% below normal (0.61 +/- 0.16 x 10(-4) min-1.microU-1.ml-1), but in this group alone, SG was reduced (from 0.026 +/- 0.008 to 0.014 +/- 0.002 min-1); thus, defects in SI and SG are synergistic in causing glucose intolerance in NIDDM. One assumption of the minimal model is that the time delay in insulin action on glucose utilization in vivo is due to sluggish insulin transport across the capillary endothelium. This was tested by comparing insulin concentrations in plasma with those in lymph (representing interstitial fluid) during euglycemic-hyperinsulinemic glucose clamps. Lymph insulin was lower than plasma insulin at basal (12 vs. 18 microU/ml) and at steady state, indicating significant loss of insulin from the interstitial space, presumably due to cellular uptake of the insulin-receptor complex. Additionally, during clamps, lymph insulin changed more slowly than plasma insulin, but the rate of glucose utilization followed a time course identical with that of lymph (r = .96) rather than plasma (r = .71). Thus, lymph insulin, which may be reflective of interstitial fluid, is the signal to which insulin-sensitive tissues are responding. These studies support the concept that, at physiological insulin levels, the time for insulin to cross the capillary endothelium is the process that determines the rate of insulin action in vivo.(ABSTRACT TRUNCATED AT 400 WORDS)

1,043 citations

Journal ArticleDOI
TL;DR: In the wake of the worldwide increase in type-2 diabetes, a major focus of research is understanding the signaling pathways impacting this disease, which are essential for development of new drugs to treat diabetes, metabolic syndrome, and their complications.
Abstract: In the wake of the worldwide increase in type-2 diabetes, a major focus of research is understanding the signaling pathways impacting this disease. Insulin signaling regulates glucose, lipid, and energy homeostasis, predominantly via action on liver, skeletal muscle, and adipose tissue. Precise modulation of this pathway is vital for adaption as the individual moves from the fed to the fasted state. The positive and negative modulators acting on different steps of the signaling pathway, as well as the diversity of protein isoform interaction, ensure a proper and coordinated biological response to insulin in different tissues. Whereas genetic mutations are causes of rare and severe insulin resistance, obesity can lead to insulin resistance through a variety of mechanisms. Understanding these pathways is essential for development of new drugs to treat diabetes, metabolic syndrome, and their complications.

1,039 citations

Journal ArticleDOI
TL;DR: The findings suggest that triglyceride accumulation in skeletal muscle in obesity derives from reduced capacity for fat oxidation and that inflexibility in regulating fat oxidation, more than fatty acid uptake, is related to insulin resistance.
Abstract: The current study was undertaken to investigate fatty acid metabolism by skeletal muscle to examine potential mechanisms that could lead to increased muscle triglyceride in obesity. Sixteen lean an...

1,038 citations


Network Information
Related Topics (5)
Insulin resistance
82.4K papers, 3.8M citations
95% related
Diabetes mellitus
169.2K papers, 6M citations
94% related
Type 2 diabetes
69.6K papers, 3M citations
93% related
Adipose tissue
54.6K papers, 2.5M citations
91% related
Blood pressure
139.2K papers, 4.2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
20232,520
20225,252
20213,164
20203,368
20193,376