scispace - formally typeset
Search or ask a question
Topic

Insulin

About: Insulin is a research topic. Over the lifetime, 124295 publications have been published within this topic receiving 5129734 citations. The topic is also known as: human insulin.


Papers
More filters
Journal ArticleDOI
TL;DR: Evidence from a variety of secretory tissues, including pancreatic islet cells, suggests that the secretory granules can be functionally divided into distinct pools that are distinguished by their release competence and/or proximity to the plasma membrane.
Abstract: Glucose-induced insulin secretion in response to a step increase in blood glucose concentrations follows a biphasic time course consisting of a rapid and transient first phase followed by a slowly developing and sustained second phase. Because Type 2 diabetes involves defects of insulin secretion, manifested as a loss of first phase and a reduction of second phase, it is important to understand the cellular mechanisms underlying biphasic insulin secretion. Insulin release involves the packaging of insulin in small (diameter ≈0.3 µm) secretory granules, the trafficking of these granules to the plasma membrane, the exocytotic fusion of the granules with the plasma membrane and eventually the retrieval of the secreted membranes by endocytosis. Until recently, studies on insulin secretion have been confined to the appearance of insulin in the extracellular space and the cellular events preceding exocytosis have been inaccessible to more detailed analysis. Evidence from a variety of secretory tissues, including pancreatic islet cells suggests, however, that the secretory granules can be functionally divided into distinct pools that are distinguished by their release competence and/or proximity to the plasma membrane. The introduction of fluorescent proteins that can be targeted to the secretory granules, in combination with the advent of new techniques that allow real-time imaging of granule trafficking in living cells (granule dynamics), has led to an explosion of our knowledge of the pre-exocytotic and post-exocytotic processes in the beta cell. Here we discuss these observations in relation to previous functional and ultra-structural data as well as the secretory defects of Type 2 diabetes.

811 citations

Journal ArticleDOI
TL;DR: Six previously unknown loci associated with fasting insulin at P < 5 × 10−8 in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals are presented.
Abstract: Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.

811 citations

Journal ArticleDOI
TL;DR: The ability of GH to induce insulin resistance is significant for the defense against hypoglycemia, for the development of "stress" diabetes during fasting and inflammatory illness, and perhaps for the "Dawn" phenomenon (the increase in insulin requirements in the early morning hours).
Abstract: In evolutionary terms, GH and intracellular STAT 5 signaling is a very old regulatory system. Whereas insulin dominates periprandially, GH may be viewed as the primary anabolic hormone during stress and fasting. GH exerts anabolic effects directly and through stimulation of IGF-I, insulin, and free fatty acids (FFA). When subjects are well nourished, the GH-induced stimulation of IGF-I and insulin is important for anabolic storage and growth of lean body mass (LBM), adipose tissue, and glycogen reserves. During fasting and other catabolic states, GH predominantly stimulates the release and oxidation of FFA, which leads to decreased glucose and protein oxidation and preservation of LBM and glycogen stores. The most prominent metabolic effect of GH is a marked increase in lipolysis and FFA levels. In the basal state, the effects of GH on protein metabolism are modest and include increased protein synthesis and decreased breakdown at the whole body level and in muscle together with decreased amino acid degradation/oxidation and decreased hepatic urea formation. During fasting and stress, the effects of GH on protein metabolism become more pronounced; lack of GH during fasting increases protein loss and urea production rates by approximately 50%, with a similar increase in muscle protein breakdown. GH is a counterregulatory hormone that antagonizes the hepatic and peripheral effects of insulin on glucose metabolism via mechanisms involving the concomitant increase in FFA flux and uptake. This ability of GH to induce insulin resistance is significant for the defense against hypoglycemia, for the development of "stress" diabetes during fasting and inflammatory illness, and perhaps for the "Dawn" phenomenon (the increase in insulin requirements in the early morning hours). Adult patients with GH deficiency are insulin resistant-probably related to increased adiposity, reduced LBM, and impaired physical performance-which temporarily worsens when GH treatment is initiated. Conversely, despite increased LBM and decreased fat mass, patients with acromegaly are consistently insulin resistant and become more sensitive after appropriate treatment.

808 citations

Journal ArticleDOI
TL;DR: The data demonstrate that a reduction of beta-cell mass leads to the development of insulin resistance, and correction of hyperglycemia with phlorizin, without change in insulin levels, normalizes insulin sensitivity.
Abstract: Insulin resistance is characteristic of the diabetic state. To define the role of hyperglycemia in generation of the insulin resistance, we examined the effect of phlorizin treatment on tissue sensitivity to insulin in partially pancreatectomized rats. Five groups were studied: group I, sham-operated controls; group II, partially pancreatectomized diabetic rats with moderate glucose intolerance; group III, diabetic rats treated with phlorizin to normalize glucose tolerance; group IV, phlorizin-treated controls; and group V, phlorizin-treated diabetic rats restudied after discontinuation of phlorizin. Insulin sensitivity was assessed with the euglyemic hyperinsulinemic clamp technique in awake, unstressed rats. Insulin-mediated glucose metabolism was reduced by approximately 30% (P less than 0.001) in diabetic rats. Phlorizin treatment of diabetic rats completely normalized insulin sensitivity but had no effect on insulin action in controls. Discontinuation of phlorizin in phlorizin-treated diabetic rats resulted in the reemergence of insulin resistance. These data demonstrate that a reduction of beta-cell mass leads to the development of insulin resistance, and correction of hyperglycemia with phlorizin, without change in insulin levels, normalizes insulin sensitivity. These results provide the first in vivo evidence that hyperglycemia per se can lead to the development of insulin resistance.

807 citations

Journal ArticleDOI
01 Dec 2000-Diabetes
TL;DR: Glargine is a peakless insulin, it lasts nearly 24 h, it has lower intersubject variability than NPH and ultralente, and it closely mimics CSII, the gold standard of basal insulin replacement.
Abstract: To compare the pharmacokinetics/dynamics of the long-acting insulin analog glargine with NPH, ultralente, and continuous subcutaneous (SC) infusion of insulin lispro (continuous subcutaneous insulin infusion [CSII]), 20 C-peptide-negative type 1 diabetic patients were studied on four occasions during an isoglycemic 24-h clamp. Patients received SC injection of either 0.3 U/kg glargine or NPH insulin (random sequence, crossover design). On two subsequent occasions, they received either an SC injection of ultralente (0.3 U/kg) or CSII (0.3 U x kg(-1) x 24 h(-1)) (random sequence, crossover design). After SC insulin injection or CSII, intravenous (IV) insulin was tapered, and glucose was infused to clamp plasma glucose at 130 mg/dl for 24 h. Onset of action (defined as reduction of IV insulin >50%) was earlier with NPH (0.8 +/- 0.2 h), CSII (0.5 +/- 0.1 h), and ultralente (1 +/- 0.2 h) versus glargine (1.5 +/- 0.3 h) (P 150 mg/dl) occurred later with glargine (22 +/- 4 h) than with NPH (14 +/- 3 h) (P < 0.05) but was similar with ultralente (20 +/- 6 h). NPH and ultralente exhibited a peak concentration and action (at 4.5 +/- 0.5 and 10.1 +/- 1 h, respectively) followed by waning, whereas glargine had no peak but had a flat concentration/action profile mimicking CSII. Interindividual variability (calculated as differences in SD of plasma insulin concentrations and glucose infusion rates in different treatments) was lower with glargine than with NPH and ultralente (P < 0.05) but was similar with glargine and CSII (NS). In conclusion, NPH and ultralente are both peak insulins. Duration of action of ultralente is greater, but intersubject variability is also greater than that of NPH. Glargine is a peakless insulin, it lasts nearly 24 h, it has lower intersubject variability than NPH and ultralente, and it closely mimics CSII, the gold standard of basal insulin replacement.

806 citations


Network Information
Related Topics (5)
Insulin resistance
82.4K papers, 3.8M citations
95% related
Diabetes mellitus
169.2K papers, 6M citations
94% related
Type 2 diabetes
69.6K papers, 3M citations
93% related
Adipose tissue
54.6K papers, 2.5M citations
91% related
Blood pressure
139.2K papers, 4.2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20243
20232,520
20225,252
20213,164
20203,368
20193,376