scispace - formally typeset
Search or ask a question

Showing papers on "Insulin resistance published in 2018"


Journal ArticleDOI
TL;DR: This work aims to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response.
Abstract: The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have ma...

1,268 citations


Journal ArticleDOI
TL;DR: It can be concluded that insulin resistance in the myocardium generates damage by at least three different mechanisms: (1) signal transduction alteration, (2) impaired regulation of substrate metabolism, and (3) altered delivery of substrates to theMyocardium.
Abstract: For many years, cardiovascular disease (CVD) has been the leading cause of death around the world. Often associated with CVD are comorbidities such as obesity, abnormal lipid profiles and insulin resistance. Insulin is a key hormone that functions as a regulator of cellular metabolism in many tissues in the human body. Insulin resistance is defined as a decrease in tissue response to insulin stimulation thus insulin resistance is characterized by defects in uptake and oxidation of glucose, a decrease in glycogen synthesis, and, to a lesser extent, the ability to suppress lipid oxidation. Literature widely suggests that free fatty acids are the predominant substrate used in the adult myocardium for ATP production, however, the cardiac metabolic network is highly flexible and can use other substrates, such as glucose, lactate or amino acids. During insulin resistance, several metabolic alterations induce the development of cardiovascular disease. For instance, insulin resistance can induce an imbalance in glucose metabolism that generates chronic hyperglycemia, which in turn triggers oxidative stress and causes an inflammatory response that leads to cell damage. Insulin resistance can also alter systemic lipid metabolism which then leads to the development of dyslipidemia and the well-known lipid triad: (1) high levels of plasma triglycerides, (2) low levels of high-density lipoprotein, and (3) the appearance of small dense low-density lipoproteins. This triad, along with endothelial dysfunction, which can also be induced by aberrant insulin signaling, contribute to atherosclerotic plaque formation. Regarding the systemic consequences associated with insulin resistance and the metabolic cardiac alterations, it can be concluded that insulin resistance in the myocardium generates damage by at least three different mechanisms: (1) signal transduction alteration, (2) impaired regulation of substrate metabolism, and (3) altered delivery of substrates to the myocardium. The aim of this review is to discuss the mechanisms associated with insulin resistance and the development of CVD. New therapies focused on decreasing insulin resistance may contribute to a decrease in both CVD and atherosclerotic plaque generation.

867 citations


Journal ArticleDOI
TL;DR: Key observations and experimental data on insulin signalling in the brain are reviewed and the concept of 'brain insulin resistance' is defined and the growing, although still inconsistent, literature concerning cognitive impairment and neuropathological abnormalities in T2DM, obesity and insulin resistance is reviewed.
Abstract: Considerable overlap has been identified in the risk factors, comorbidities and putative pathophysiological mechanisms of Alzheimer disease and related dementias (ADRDs) and type 2 diabetes mellitus (T2DM), two of the most pressing epidemics of our time Much is known about the biology of each condition, but whether T2DM and ADRDs are parallel phenomena arising from coincidental roots in ageing or synergistic diseases linked by vicious pathophysiological cycles remains unclear Insulin resistance is a core feature of T2DM and is emerging as a potentially important feature of ADRDs Here, we review key observations and experimental data on insulin signalling in the brain, highlighting its actions in neurons and glia In addition, we define the concept of 'brain insulin resistance' and review the growing, although still inconsistent, literature concerning cognitive impairment and neuropathological abnormalities in T2DM, obesity and insulin resistance Lastly, we review evidence of intrinsic brain insulin resistance in ADRDs By expanding our understanding of the overlapping mechanisms of these conditions, we hope to accelerate the rational development of preventive, disease-modifying and symptomatic treatments for cognitive dysfunction in T2DM and ADRDs alike

791 citations


Journal ArticleDOI
TL;DR: What is known about the pathophysiology of GDM, and where there are gaps in the literature that warrant further exploration are discussed, are discussed.
Abstract: Gestational diabetes mellitus (GDM) is a serious pregnancy complication, in which women without previously diagnosed diabetes develop chronic hyperglycemia during gestation. In most cases, this hyperglycemia is the result of impaired glucose tolerance due to pancreatic β-cell dysfunction on a background of chronic insulin resistance. Risk factors for GDM include overweight and obesity, advanced maternal age, and a family history or any form of diabetes. Consequences of GDM include increased risk of maternal cardiovascular disease and type 2 diabetes and macrosomia and birth complications in the infant. There is also a longer-term risk of obesity, type 2 diabetes, and cardiovascular disease in the child. GDM affects approximately 16.5% of pregnancies worldwide, and this number is set to increase with the escalating obesity epidemic. While several management strategies exist—including insulin and lifestyle interventions—there is not yet a cure or an efficacious prevention strategy. One reason for this is that the molecular mechanisms underlying GDM are poorly defined. This review discusses what is known about the pathophysiology of GDM, and where there are gaps in the literature that warrant further exploration.

736 citations


Journal ArticleDOI
TL;DR: This review focuses on the role of PI3K/AKT signalling in the skeletal muscle, adipose tissue, liver, brain and pancreas, and discusses how this signalling pathway affects the development of the aforementioned diseases.
Abstract: Obesity and type 2 diabetes mellitus are complicated metabolic diseases that affect multiple organs and are characterized by hyperglycaemia. Currently, stable and effective treatments for obesity and type 2 diabetes mellitus are not available. Therefore, the mechanisms leading to obesity and diabetes and more effective ways to treat obesity and diabetes should be identified. Based on accumulated evidences, the PI3K/AKT signalling pathway is required for normal metabolism due to its characteristics, and its imbalance leads to the development of obesity and type 2 diabetes mellitus. This review focuses on the role of PI3K/AKT signalling in the skeletal muscle, adipose tissue, liver, brain and pancreas, and discusses how this signalling pathway affects the development of the aforementioned diseases. We also summarize evidences for recently identified therapeutic targets of the PI3K/AKT pathway as treatments for obesity and type 2 diabetes mellitus. PI3K/AKT pathway damaged in various tissues of the body leads to obesity and type 2 diabetes as the result of insulin resistance, and in turn, insulin resistance exacerbates the PI3K/AKT pathway, forming a vicious circle.

711 citations


Journal ArticleDOI
TL;DR: Small, more definitive trials are suggested to determine if lowering sugar/HFCS intake, and/or blocking uric acid generation, may help reduce NAFLD and its downstream complications of cirrhosis and chronic liver disease.

537 citations


Journal ArticleDOI
20 Feb 2018-JAMA
TL;DR: There was no significant difference in weight change between a healthy low-fat diet vs ahealthy low-carbohydrate diet, and neither genotype pattern nor baseline insulin secretion was associated with the dietary effects on weight loss in this 12-month weight loss study.
Abstract: Importance Dietary modification remains key to successful weight loss. Yet, no one dietary strategy is consistently superior to others for the general population. Previous research suggests genotype or insulin-glucose dynamics may modify the effects of diets. Objective To determine the effect of a healthy low-fat (HLF) diet vs a healthy low-carbohydrate (HLC) diet on weight change and if genotype pattern or insulin secretion are related to the dietary effects on weight loss. Design, Setting, and Participants The Diet Intervention Examining The Factors Interacting with Treatment Success (DIETFITS) randomized clinical trial included 609 adults aged 18 to 50 years without diabetes with a body mass index between 28 and 40. The trial enrollment was from January 29, 2013, through April 14, 2015; the date of final follow-up was May 16, 2016. Participants were randomized to the 12-month HLF or HLC diet. The study also tested whether 3 single-nucleotide polymorphism multilocus genotype responsiveness patterns or insulin secretion (INS-30; blood concentration of insulin 30 minutes after a glucose challenge) were associated with weight loss. Interventions Health educators delivered the behavior modification intervention to HLF (n = 305) and HLC (n = 304) participants via 22 diet-specific small group sessions administered over 12 months. The sessions focused on ways to achieve the lowest fat or carbohydrate intake that could be maintained long-term and emphasized diet quality. Main Outcomes and Measures Primary outcome was 12-month weight change and determination of whether there were significant interactions among diet type and genotype pattern, diet and insulin secretion, and diet and weight loss. Results Among 609 participants randomized (mean age, 40 [SD, 7] years; 57% women; mean body mass index, 33 [SD, 3]; 244 [40%] had a low-fat genotype; 180 [30%] had a low-carbohydrate genotype; mean baseline INS-30, 93 μIU/mL), 481 (79%) completed the trial. In the HLF vs HLC diets, respectively, the mean 12-month macronutrient distributions were 48% vs 30% for carbohydrates, 29% vs 45% for fat, and 21% vs 23% for protein. Weight change at 12 months was −5.3 kg for the HLF diet vs −6.0 kg for the HLC diet (mean between-group difference, 0.7 kg [95% CI, −0.2 to 1.6 kg]). There was no significant diet-genotype pattern interaction (P = .20) or diet-insulin secretion (INS-30) interaction (P = .47) with 12-month weight loss. There were 18 adverse events or serious adverse events that were evenly distributed across the 2 diet groups. Conclusions and Relevance In this 12-month weight loss diet study, there was no significant difference in weight change between a healthy low-fat diet vs a healthy low-carbohydrate diet, and neither genotype pattern nor baseline insulin secretion was associated with the dietary effects on weight loss. In the context of these 2 common weight loss diet approaches, neither of the 2 hypothesized predisposing factors was helpful in identifying which diet was better for whom. Trial Registration clinicaltrials.gov Identifier:NCT01826591

469 citations


Journal ArticleDOI
TL;DR: In the past decade, major progress has led to the delineation of mechanisms of glucose transport, lipid synthesis, storage and mobilization, which will accelerate the discovery of new treatment modalities for diabetes.
Abstract: The mechanism of insulin action is a central theme in biology and medicine. In addition to the rather rare condition of insulin deficiency caused by autoimmune destruction of pancreatic β-cells, genetic and acquired abnormalities of insulin action underlie the far more common conditions of type 2 diabetes, obesity and insulin resistance. The latter predisposes to diseases ranging from hypertension to Alzheimer disease and cancer. Hence, understanding the biochemical and cellular properties of insulin receptor signalling is arguably a priority in biomedical research. In the past decade, major progress has led to the delineation of mechanisms of glucose transport, lipid synthesis, storage and mobilization. In addition to direct effects of insulin on signalling kinases and metabolic enzymes, the discovery of mechanisms of insulin-regulated gene transcription has led to a reassessment of the general principles of insulin action. These advances will accelerate the discovery of new treatment modalities for diabetes.

450 citations


Journal ArticleDOI
TL;DR: Lifestyle, pharmacological, and surgical interventions allow a multidisciplinary approach to overweight/obesity that may improve outcomes and align with a public health message to combat the growing epidemic of obesity worldwide and to build healthier lives free of cardiovascular diseases.
Abstract: The prevalence of obesity has increased globally over the last 2 decades. Although the body mass index has been a convenient and simple index of obesity at the population level, studies have shown that obesity defined by body mass index alone is a remarkably heterogeneous condition with varying cardiovascular and metabolic manifestations across individuals. Adipose tissue is an exquisitely active metabolic organ engaged in cross-talk between various systems; perturbation of adipose tissue results in a pathological response to positive caloric balance in susceptible individuals that directly and indirectly contributes to cardiovascular and metabolic disease. Inadequate subcutaneous adipose tissue expansion in the face of dietary triglycerides leads to visceral and ectopic fat deposition, inflammatory/adipokine dysregulation, and insulin resistance. Conversely, preferential fat storage in the lower body depot may act as a metabolic buffer and protect other tissues from lipotoxicity caused by lipid overflow and ectopic fat. Translational, epidemiological, and clinical studies over the past 30 years have clearly demonstrated a strong link between visceral and ectopic fat and the development of a clinical syndrome characterized by atherogenic dyslipidemia, hyperinsulinemia/glucose intolerance, hypertension, atherosclerosis, and adverse cardiac remodeling/heart failure. This relationship is even more nuanced when clinical entities such as metabolically healthy obesity phenotype and the obesity paradox are considered. Although it is clear that the accumulation of visceral/ectopic fat is a major contributor to cardiovascular and metabolic risk above and beyond the body mass index, implementation of fat distribution assessment into clinical practice remains a challenge. Anthropometric indexes of obesity are easily implemented, but newer imaging-based methods offer improved sensitivity and specificity for measuring specific depots. Lifestyle, pharmacological, and surgical interventions allow a multidisciplinary approach to overweight/obesity that may improve outcomes and align with a public health message to combat the growing epidemic of obesity worldwide and to build healthier lives free of cardiovascular diseases.

432 citations


Journal ArticleDOI
TL;DR: A novel class of liver-targeted mitochondrial uncoupling agents increases hepatocellular energy expenditure, reversing the metabolic and hepatic complications of NAFLD.

427 citations


Journal ArticleDOI
TL;DR: The current understanding of the pathophysiological mechanisms in diabetic cardiomyopathy is summarized, potential preventative and therapeutic strategies are explored and the relationships among insulin resistance/hyperinsulinaemia, hyperglycaemia and the development of cardiac dysfunction are reviewed.
Abstract: Diabetic cardiomyopathy is characterised in its early stages by diastolic relaxation abnormalities and later by clinical heart failure in the absence of dyslipidaemia, hypertension and coronary artery disease. Insulin resistance, hyperinsulinaemia and hyperglycaemia are each independent risk factors for the development of diabetic cardiomyopathy. The pathophysiological factors in diabetes that drive the development of cardiomyopathy include systemic metabolic disorders, inappropriate activation of the renin–angiotensin–aldosterone system, subcellular component abnormalities, oxidative stress, inflammation and dysfunctional immune modulation. These abnormalities collectively promote cardiac tissue interstitial fibrosis, cardiac stiffness/diastolic dysfunction and, later, systolic dysfunction, precipitating the syndrome of clinical heart failure. Recent evidence has revealed that dysregulation of coronary endothelial cells and exosomes also contributes to the pathology behind diabetic cardiomyopathy. Herein, we review the relationships among insulin resistance/hyperinsulinaemia, hyperglycaemia and the development of cardiac dysfunction. We summarise the current understanding of the pathophysiological mechanisms in diabetic cardiomyopathy and explore potential preventative and therapeutic strategies.

Journal ArticleDOI
04 Jul 2018-Nature
TL;DR: It is shown, in several model tumours in mice, that systemic glucose–insulin feedback caused by targeted inhibition of this pathway is sufficient to activate PI3K signalling, even in the presence ofPI3K inhibitors.
Abstract: Mutations in PIK3CA, which encodes the p110α subunit of the insulin-activated phosphatidylinositol-3 kinase (PI3K), and loss of function mutations in PTEN, which encodes a phosphatase that degrades the phosphoinositide lipids generated by PI3K, are among the most frequent events in human cancers1,2. However, pharmacological inhibition of PI3K has resulted in variable clinical responses, raising the possibility of an inherent mechanism of resistance to treatment. As p110α mediates virtually all cellular responses to insulin, targeted inhibition of this enzyme disrupts glucose metabolism in multiple tissues. For example, blocking insulin signalling promotes glycogen breakdown in the liver and prevents glucose uptake in the skeletal muscle and adipose tissue, resulting in transient hyperglycaemia within a few hours of PI3K inhibition. The effect is usually transient because compensatory insulin release from the pancreas (insulin feedback) restores normal glucose homeostasis3. However, the hyperglycaemia may be exacerbated or prolonged in patients with any degree of insulin resistance and, in these cases, necessitates discontinuation of therapy3-6. We hypothesized that insulin feedback induced by PI3K inhibitors may reactivate the PI3K-mTOR signalling axis in tumours, thereby compromising treatment effectiveness7,8. Here we show, in several model tumours in mice, that systemic glucose-insulin feedback caused by targeted inhibition of this pathway is sufficient to activate PI3K signalling, even in the presence of PI3K inhibitors. This insulin feedback can be prevented using dietary or pharmaceutical approaches, which greatly enhance the efficacy/toxicity ratios of PI3K inhibitors. These findings have direct clinical implications for the multiple p110α inhibitors that are in clinical trials and provide a way to increase treatment efficacy for patients with many types of tumour.

Journal ArticleDOI
TL;DR: The metabolic syndrome-otherwise called syndrome X, insulin resistance syndrome, Reaven syndrome, and "the deadly quartet"-is the name given to the aggregate of clinical conditions comprising central and abdominal obesity, systemic hypertension, insulin Resistance, and atherogenic dyslipidemia.

Journal ArticleDOI
TL;DR: This review will summarize the current understanding of the regulatory mechanisms of ATM function in relation to obesity, type 2 diabetes, depot of origin, and to other leukocytes such as AT dendritic cells, with hopes of emphasizing the regulatory nodes that can potentially be targeted to prevent and treat obesity‐related metabolic disorders.
Abstract: The expansion of adipose tissue (AT) in obesity is accompanied by the accumulation of immune cells that contribute to a state of low-grade, chronic inflammation and dysregulated metabolism. Adipose tissue macrophages (ATMs) represent the most abundant class of leukocytes in AT and are involved in the regulation of several regulatory physiological processes, such as tissue remodeling and insulin sensitivity. With progressive obesity, ATMs are key mediators of meta-inflammation, insulin resistance and impairment of adipocyte function. While macrophage recruitment from blood monocytes is a critical component of the generation of AT inflammation, new studies have revealed a role for ATM proliferation in the early stages of obesity and in sustaining AT inflammation. In addition, studies have revealed a more complex range of macrophage activation states than the previous M1/M2 model, and the existence of different macrophage profiles between human and animal models. This review will summarize the current understanding of the regulatory mechanisms of ATM function in relation to obesity, type 2 diabetes, depot of origin, and to other leukocytes such as AT dendritic cells, with hopes of emphasizing the regulatory nodes that can potentially be targeted to prevent and treat obesity-related metabolic disorders.

Journal ArticleDOI
TL;DR: To block the inflammatory responses by blocking TNF‐α and T NF‐α signaling may be an effective strategy for the treatment of insulin resistance and T2DM.
Abstract: Pathogenesis of type 2 diabetes mellitus (T2DM) and development of insulin resistance are characterized by multi-stimuli factors notably glucolipotoxicity, generation of reactive oxygen species (ROS), epigenetic factors, activation of various transcriptional mediated pathways along with the augmented levels of various pro-inflammatory cytokines Among the various pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α) is one the most important pro-inflammatory mediator that is critically involved in the development of insulin resistance and pathogenesis of T2DM TNF-α is mainly produced in adipocytes and/or peripheral tissues, and induces tissue-specific inflammation through the involvement of generation of ROS and activation of various transcriptional mediated pathways The raised level of TNF-α induces insulin resistance in adipocytes and peripheral tissues by impairing the insulin signaling through serine phosphorylation that leads to the development of T2DM Anti-TNF-α treatment strategies have been developed to reduce the incidence of insulin resistance and development of T2DM In this article, we have briefly described how TNF-α plays crucial role to induce insulin resistance and pathogenesis of T2DM To block the inflammatory responses by blocking TNF-α and TNF-α signaling may be an effective strategy for the treatment of insulin resistance and T2DM J Cell Biochem 119: 105-110, 2018 © 2017 Wiley Periodicals, Inc

Journal ArticleDOI
TL;DR: An attempt has been made to comprehensively compile updated information available in context of endothelial and platelet dysfunction in T2DM, supported by the clinical trials reporting the importance of endothelium dysfunction and platelets hyperactivity in the pathogenesis of atherosclerotic vascular complications.
Abstract: The incidence and prevalence of diabetes mellitus is rapidly increasing worldwide at an alarming rate. Type 2 diabetes mellitus (T2DM) is the most prevalent form of diabetes, accounting for approximately 90–95% of the total diabetes cases worldwide. Besides affecting the ability of body to use glucose, it is associated with micro-vascular and macro-vascular complications. Augmented atherosclerosis is documented to be the key factor leading to vascular complications in T2DM patients. The metabolic milieu of T2DM, including insulin resistance, hyperglycemia and release of excess free fatty acids, along with other metabolic abnormalities affects vascular wall by a series of events including endothelial dysfunction, platelet hyperactivity, oxidative stress and low-grade inflammation. Activation of these events further enhances vasoconstriction and promotes thrombus formation, ultimately resulting in the development of atherosclerosis. All these evidences are supported by the clinical trials reporting the importance of endothelial dysfunction and platelet hyperactivity in the pathogenesis of atherosclerotic vascular complications. In this review, an attempt has been made to comprehensively compile updated information available in context of endothelial and platelet dysfunction in T2DM.

Journal ArticleDOI
TL;DR: The European Federation of Periodontology (EFP) and the International Diabetes Federation (IDF) report consensus guidelines for physicians, oral healthcare professionals and patients to improve early diagnosis, prevention and management of diabetes and periodontitis as mentioned in this paper.
Abstract: Background Diabetes and periodontitis are chronic non-communicable diseases independently associated with mortality and have a bidirectional relationship. Aims To update the evidence for their epidemiological and mechanistic associations and re-examine the impact of effective periodontal therapy upon metabolic control (glycated haemoglobin, HbA1C). Epidemiology There is strong evidence that people with periodontitis have elevated risk for dysglycaemia and insulin resistance. Cohort studies among people with diabetes demonstrate significantly higher HbA1C levels in patients with periodontitis (versus periodontally healthy patients), but there are insufficient data among people with type 1 diabetes. Periodontitis is also associated with an increased risk of incident type 2 diabetes. Mechanisms Mechanistic links between periodontitis and diabetes involve elevations in interleukin (IL)-1-β, tumour necrosis factor-α, IL-6, receptor activator of nuclear factor-kappa B ligand/osteoprotegerin ratio, oxidative stress and Toll-like receptor (TLR) 2/4 expression. Interventions Periodontal therapy is safe and effective in people with diabetes, and it is associated with reductions in HbA1C of 0.27–0.48% after 3 months, although studies involving longer-term follow-up are inconclusive. Conclusions The European Federation of Periodontology (EFP) and the International Diabetes Federation (IDF) report consensus guidelines for physicians, oral healthcare professionals and patients to improve early diagnosis, prevention and comanagement of diabetes and periodontitis.

Journal ArticleDOI
TL;DR: In individuals with compromised insulin signaling, such as insulin resistance in type 2 diabetes, insulin fails to suppress hepatic gluconeogenesis, even in the fed state; hence, an insight into these insulin‐moderated pathways is critical for therapeutic purposes.
Abstract: The coordinated regulation between cellular glucose uptake and endogenous glucose production is indispensable for the maintenance of constant blood glucose concentrations. The liver contributes significantly to this process by altering the levels of hepatic glucose release, through controlling the processes of de novo glucose production (gluconeogenesis) and glycogen breakdown (glycogenolysis). Various nutritional and hormonal stimuli signal to alter hepatic gluconeogenic flux, and suppression of this metabolic pathway during the postprandial state can, to a significant extent, be attributed to insulin. Here, we review some of the molecular mechanisms through which insulin modulates hepatic gluconeogenesis, thus controlling glucose production by the liver to ultimately maintain normoglycemia. Various signaling pathways governed by insulin converge at the level of transcriptional regulation of the key hepatic gluconeogenic genes PCK1 and G6PC, highlighting this as one of the focal mechanisms through which gluconeogenesis is modulated. In individuals with compromised insulin signaling, such as insulin resistance in type 2 diabetes, insulin fails to suppress hepatic gluconeogenesis, even in the fed state; hence, an insight into these insulin-moderated pathways is critical for therapeutic purposes.

Journal ArticleDOI
11 Jan 2018-Cell
TL;DR: The major features of the current understanding with respect to chronic obesity-related inflammation in metabolic tissues are reviewed and how these inflammatory changes affect insulin sensitivity, insulin secretion, food intake, and glucose homeostasis are reviewed.

Journal ArticleDOI
TL;DR: A short-term intervention with an isocaloric low-carbohydrate diet with increased protein content in obese subjects with NAFLD and the resulting alterations in metabolism and the gut microbiota are characterized using a multi-omics approach to highlight the potential of exploring diet-microbiota interactions for treatingNAFLD.

Journal ArticleDOI
TL;DR: Estimating the prevalence of diagnosed diabetes among adults by primary type is important for monitoring trends, planning public health responses, assessing the burden of disease for education and management programs, and prioritizing national plans for future type-specific health services.
Abstract: Currently 23 million U.S. adults have been diagnosed with diabetes (1). The two most common forms of diabetes are type 1 and type 2. Type 1 diabetes results from the autoimmune destruction of the pancreas's beta cells, which produce insulin. Persons with type 1 diabetes require insulin for survival; insulin may be given as a daily shot or continuously with an insulin pump (2). Type 2 diabetes is mainly caused by a combination of insulin resistance and relative insulin deficiency (3). A small proportion of diabetes cases might be types other than type 1 or type 2, such as maturity-onset diabetes of the young or latent autoimmune diabetes in adults (3). Although the majority of prevalent cases of type 1 and type 2 diabetes are in adults, national data on the prevalence of type 1 and type 2 in the U.S. adult population are sparse, in part because of the previous difficulty in classifying diabetes by type in surveys (2,4,5). In 2016, supplemental questions to help distinguish diabetes type were added to the National Health Interview Survey (NHIS) (6). This study used NHIS data from 2016 to estimate the prevalence of diagnosed diabetes among adults by primary type. Overall, based on self-reported type and current insulin use, 0.55% of U.S. adults had diagnosed type 1 diabetes, representing 1.3 million adults; 8.6% had diagnosed type 2 diabetes, representing 21.0 million adults. Of all diagnosed cases, 5.8% were type 1 diabetes, and 90.9% were type 2 diabetes; the remaining 3.3% of cases were other types of diabetes. Understanding the prevalence of diagnosed diabetes by type is important for monitoring trends, planning public health responses, assessing the burden of disease for education and management programs, and prioritizing national plans for future type-specific health services.

Journal ArticleDOI
TL;DR: It is demonstrated that AIMD affects gut homeostasis and glucose metabolism by decreasing luminal short chain fatty acids and leading to a shift of energy utilization by colonocytes and potentially shifting colonocyte energy utilization from SCFAs to glucose.
Abstract: Antibiotic-induced microbiome depletion (AIMD) has been used frequently to study the role of the gut microbiome in pathological conditions. However, unlike germ-free mice, the effects of AIMD on host metabolism remain incompletely understood. Here we show the effects of AIMD to elucidate its effects on gut homeostasis, luminal signaling, and metabolism. We demonstrate that AIMD, which decreases luminal Firmicutes and Bacteroidetes species, decreases baseline serum glucose levels, reduces glucose surge in a tolerance test, and improves insulin sensitivity without altering adiposity. These changes occur in the setting of decreased luminal short-chain fatty acids (SCFAs), especially butyrate, and the secondary bile acid pool, which affects whole-body bile acid metabolism. In mice, AIMD alters cecal gene expression and gut glucagon-like peptide 1 signaling. Extensive tissue remodeling and decreased availability of SCFAs shift colonocyte metabolism toward glucose utilization. We suggest that AIMD alters glucose homeostasis by potentially shifting colonocyte energy utilization from SCFAs to glucose.

Journal ArticleDOI
TL;DR: A comprehensive understanding of the metabolic adaptations involved in insulin resistance may enable the identification of novel targets for improving insulin sensitivity and preventing, and treating, T2DM.
Abstract: The cause of insulin resistance in obesity and type 2 diabetes mellitus (T2DM) is not limited to impaired insulin signalling but also involves the complex interplay of multiple metabolic pathways. The analysis of large data sets generated by metabolomics and lipidomics has shed new light on the roles of metabolites such as lipids, amino acids and bile acids in modulating insulin sensitivity. Metabolites can regulate insulin sensitivity directly by modulating components of the insulin signalling pathway, such as insulin receptor substrates (IRSs) and AKT, and indirectly by altering the flux of substrates through multiple metabolic pathways, including lipogenesis, lipid oxidation, protein synthesis and degradation and hepatic gluconeogenesis. Moreover, the post-translational modification of proteins by metabolites and lipids, including acetylation and palmitoylation, can alter protein function. Furthermore, the role of the microbiota in regulating substrate metabolism and insulin sensitivity is unfolding. In this Review, we discuss the emerging roles of metabolites in the pathogenesis of insulin resistance and T2DM. A comprehensive understanding of the metabolic adaptations involved in insulin resistance may enable the identification of novel targets for improving insulin sensitivity and preventing, and treating, T2DM.

Journal ArticleDOI
TL;DR: It is unclear whether abnormalities in brain glucose homeostasis are associated with Alzheimer's disease (AD) pathogenesis, but efforts are being made to find out.
Abstract: Introduction It is unclear whether abnormalities in brain glucose homeostasis are associated with Alzheimer's disease (AD) pathogenesis. Methods Within the autopsy cohort of the Baltimore Longitudinal Study of Aging, we measured brain glucose concentration and assessed the ratios of the glycolytic amino acids, serine, glycine, and alanine to glucose. We also quantified protein levels of the neuronal (GLUT3) and astrocytic (GLUT1) glucose transporters. Finally, we assessed the relationships between plasma glucose measured before death and brain tissue glucose. Results Higher brain tissue glucose concentration, reduced glycolytic flux, and lower GLUT3 are related to severity of AD pathology and the expression of AD symptoms. Longitudinal increases in fasting plasma glucose levels are associated with higher brain tissue glucose concentrations. Discussion Impaired glucose metabolism due to reduced glycolytic flux may be intrinsic to AD pathogenesis. Abnormalities in brain glucose homeostasis may begin several years before the onset of clinical symptoms.

Journal ArticleDOI
Naoto Katakami1
TL;DR: Major biochemical pathways involved in the development of diabetic macroangiopathy are overproduction of reactive oxygen species, increased formation of advanced glycation end-products (AGEs) and activation of the AGEs-receptor for AGE axis, polyol and hexosamine flux, protein kinase C activation, and chronic vascular inflammation.
Abstract: Diabetic macroangiopathy, atherosclerosis secondary to diabetes mellitus (DM), causes cerebro-cardiovascular diseases, which are major causes of death in patients with DM and significantly reduce their quality of life. The alterations in vascular homeostasis due to endothelial and vascular smooth muscle cell dysfunction are the main features of diabetic macroangiopathy. Although multiple metabolic abnormalities that characterize diabetes are involved in the progression of atherosclerosis in patients with DM, it may be said that prolonged exposure to hyperglycemia and insulin resistance clustering with other risk factors such as obesity, arterial hypertension, and dyslipidemia play crucial roles. Laboratory and clinical researches in the past decades have revealed that major biochemical pathways involved in the development of diabetic macroangiopathy are as follows: overproduction of reactive oxygen species, increased formation of advanced glycation end-products (AGEs) and activation of the AGEs-receptor for AGE axis, polyol and hexosamine flux, protein kinase C activation, and chronic vascular inflammation. Among them, oxidative stress is considered to be a key factor.

Journal ArticleDOI
TL;DR: An update of the previous review from 2008 is provided, with a focus on mechanistic insights of how HCF diets may improve IR and the risk of developing T2D.
Abstract: Large prospective cohort studies consistently show associations of a high dietary fiber intake (>25 g/d in women and >38 g/d in men) with a 20-30% reduced risk of developing type 2 diabetes (T2D), after correction for confounders. It is less well recognized that these effects appear to be mainly driven by high intakes of whole grains and insoluble cereal fibers, which typically are nonviscous and do not relevantly influence postprandial glucose responses [i.e., glycemic index (GI)] or are strongly fermented by the gut microbiota in the colon. In contrast, a dietary focus on soluble, viscous, gel-forming, more readily fermentable fiber intakes derived from fruit and certain vegetables yields mixed results and generally does not appear to reduce T2D risk. Although disentangling types of fiber-rich foods and separating these from possible effects related to the GI is an obvious challenge, the common conclusion that key metabolic effects of high-fiber intake are explained by mechanisms that should mainly apply to the soluble, viscous type can be challenged. More recently, studies in humans and animal models focused on gaining mechanistic insights into why especially high-cereal-fiber (HCF) diets appear to improve insulin resistance (IR) and diabetes risk. Although effects of HCF diets on weight loss are only moderate and comparable to other types of dietary fibers, possible novel mechanisms have emerged, which include the prevention of the absorption of dietary protein and modulation of the amino acid metabolic signature. Here we provide an update of our previous review from 2008, with a focus on mechanistic insights of how HCF diets may improve IR and the risk of developing T2D.

Journal ArticleDOI
TL;DR: It is reported that obesity-induced insulin resistance in mice precedes macrophage accumulation and inflammation in adipose tissue, and it is suggested that insulin resistant tissue leads to inflammation rather than vice versa.
Abstract: Obesity is a major risk factor for insulin resistance and type 2 diabetes. In adipose tissue, obesity-mediated insulin resistance correlates with the accumulation of proinflammatory macrophages and inflammation. However, the causal relationship of these events is unclear. Here, we report that obesity-induced insulin resistance in mice precedes macrophage accumulation and inflammation in adipose tissue. Using a mouse model that combines genetically induced, adipose-specific insulin resistance (mTORC2-knockout) and diet-induced obesity, we found that insulin resistance causes local accumulation of proinflammatory macrophages. Mechanistically, insulin resistance in adipocytes results in production of the chemokine monocyte chemoattractant protein 1 (MCP1), which recruits monocytes and activates proinflammatory macrophages. Finally, insulin resistance (high homeostatic model assessment of insulin resistance [HOMA-IR]) correlated with reduced insulin/mTORC2 signaling and elevated MCP1 production in visceral adipose tissue from obese human subjects. Our findings suggest that insulin resistance in adipose tissue leads to inflammation rather than vice versa.

Journal ArticleDOI
TL;DR: The role of Mn in the prevention and development of metabolic diseases is discussed in this paper, where it is shown that deficiency in dietary Mn as well as excessive Mn exposure could increase reactive oxygen species (ROS) generation and result in further oxidative stress.
Abstract: Manganese (Mn) is an essential element that is involved in the synthesis and activation of many enzymes and in the regulation of the metabolism of glucose and lipids in humans. In addition, Mn is one of the required components for Mn superoxide dismutase (MnSOD) that is mainly responsible for scavenging reactive oxygen species (ROS) in mitochondrial oxidative stress. Both Mn deficiency and intoxication are associated with adverse metabolic and neuropsychiatric effects. Over the past few decades, the prevalence of metabolic diseases, including type 2 diabetes mellitus (T2MD), obesity, insulin resistance, atherosclerosis, hyperlipidemia, nonalcoholic fatty liver disease (NAFLD), and hepatic steatosis, has increased dramatically. Previous studies have found that ROS generation, oxidative stress, and inflammation are critical for the pathogenesis of metabolic diseases. In addition, deficiency in dietary Mn as well as excessive Mn exposure could increase ROS generation and result in further oxidative stress. However, the relationship between Mn and metabolic diseases is not clear. In this review, we provide insights into the role Mn plays in the prevention and development of metabolic diseases.

Journal ArticleDOI
TL;DR: High-fat, low-carbohydrate diets, known as ketogenic diets, have been used as a non-pharmacological treatment for refractory epilepsy and the mechanisms underlying the ketogenic diet might also have roles in other disorders, such as preventing neurodegeneration in Alzheimer's disease, the proliferation and spread of cancer, and insulin resistance in type 2 diabetes.
Abstract: High-fat, low-carbohydrate diets, known as ketogenic diets, have been used as a non-pharmacological treatment for refractory epilepsy. A key mechanism of this treatment is thought to be the generation of ketones, which provide brain cells (neurons and astrocytes) with an energy source that is more efficient than glucose, resulting in beneficial downstream metabolic changes, such as increasing adenosine levels, which might have effects on seizure control. However, some studies have challenged the central role of ketones because medium-chain fatty acids, which are part of a commonly used variation of the diet (the medium-chain triglyceride ketogenic diet), have been shown to directly inhibit AMPA receptors (glutamate receptors), and to change cell energetics through mitochondrial biogenesis. Through these mechanisms, medium-chain fatty acids rather than ketones are likely to block seizure onset and raise seizure threshold. The mechanisms underlying the ketogenic diet might also have roles in other disorders, such as preventing neurodegeneration in Alzheimer's disease, the proliferation and spread of cancer, and insulin resistance in type 2 diabetes. Analysing medium-chain fatty acids in future ketogenic diet studies will provide further insights into their importance in modified forms of the diet. Moreover, the results of these studies could facilitate the development of new pharmacological and dietary therapies for epilepsy and other disorders.

Journal ArticleDOI
TL;DR: It is hypothesized that dietary macronutrient composition influences the pathways, mediators, and magnitude of weight gain-induced changes in IHTG, and decreased intakes of SAT could be beneficial in reducing I HTG and the associated risk of diabetes.
Abstract: OBJECTIVE Nonalcoholic fatty liver disease (i.e., increased intrahepatic triglyceride [IHTG] content), predisposes to type 2 diabetes and cardiovascular disease. Adipose tissue lipolysis and hepatic de novo lipogenesis (DNL) are the main pathways contributing to IHTG. We hypothesized that dietary macronutrient composition influences the pathways, mediators, and magnitude of weight gain-induced changes in IHTG. RESEARCH DESIGN AND METHODS We overfed 38 overweight subjects (age 48 ± 2, BMI 31 ± 1 kg/m2, liver fat 4.7 ± 0.9%) 1,000 extra kcal/day of saturated (SAT) or unsaturated (UNSAT) fat or simple sugars (CARB) for 3 weeks. We measured IHTG (1H-MRS), pathways contributing to IHTG (lipolysis ([2H5]glycerol) and DNL (2H2O) basally and during euglycemic hyperinsulinemia, insulin resistance, endotoxemia, plasma ceramides, and adipose tissue gene expression at 0 and 3 weeks. RESULTS Overfeeding SAT increased IHTG more (+55%) than UNSAT (+15%, P < 0.05). CARB increased IHTG (+33%) by stimulating DNL (+98%). SAT significantly increased while UNSAT decreased lipolysis. SAT induced insulin resistance and endotoxemia and significantly increased multiple plasma ceramides. The diets had distinct effects on adipose tissue gene expression. CONCLUSIONS Macronutrient composition of excess energy influences pathways of IHTG: CARB increases DNL, while SAT increases and UNSAT decreases lipolysis. SAT induced greatest increase in IHTG, insulin resistance, and harmful ceramides. Decreased intakes of SAT could be beneficial in reducing IHTG and the associated risk of diabetes.