scispace - formally typeset
Search or ask a question

Showing papers on "Insulin resistance published in 2021"


Journal ArticleDOI
TL;DR: Low to medium-intensity high volume resistive exercise, easily implementable in home-settings, will have positive effects, particularly if combined with a 15–25% reduction in daily energy intake, which seems ideal for preserving neuromuscular, metabolic and cardiovascular health.
Abstract: The COVID-19 pandemic is an unprecedented health crisis as entire populations have been asked to self-isolate and live in home-confinement for several weeks to months, which in itself represents a physiological challenge with significant health risks. This paper describes the impact of sedentarism on the human body at the level of the muscular, cardiovascular, metabolic, endocrine and nervous systems and is based on evidence from several models of inactivity, including bed rest, unilateral limb suspension, and step-reduction. Data form these studies show that muscle wasting occurs rapidly, being detectable within two days of inactivity. This loss of muscle mass is associated with fibre denervation, neuromuscular junction damage and upregulation of protein breakdown, but is mostly explained by the suppression of muscle protein synthesis. Inactivity also affects glucose homeostasis as just few days of step reduction or bed rest, reduce insulin sensitivity, principally in muscle. Additionally, aerobic capacity is impaired at all levels of the O2 cascade, from the cardiovascular system, including peripheral circulation, to skeletal muscle oxidative function. Positive energy balance during physical inactivity is associated with fat deposition, associated with systemic inflammation and activation of antioxidant defences, exacerbating muscle loss. Importantly, these deleterious effects of inactivity can be diminished by routine exercise practice, but the exercise dose-response relationship is currently unknown. Nevertheless, low to medium-intensity high volume resistive exercise, easily implementable in home-settings, will have positive effects, particularly if combined with a 15-25% reduction in daily energy intake. This combined regimen seems ideal for preserving neuromuscular, metabolic and cardiovascular health.Highlights This paper describes the impact of sedentarism, caused by the COVID-19 home confinement on the neuromuscular, cardiovascular, metabolic and endocrine systems.Just few days of sedentary lifestyle are sufficient to induce muscle loss, neuromuscular junction damage and fibre denervation, insulin resistance, decreased aerobic capacity, fat deposition and low-grade systemic inflammation.Regular low/medium intensity high volume exercise, together with a 15-25% reduction in caloric intake are recommended for preserving neuromuscular, cardiovascular, metabolic and endocrine health.

286 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of metabolic changes that occur in heart failure are complex and are dependent not only on the severity and type of heart failure present but also on the co-existence of common comorbidities such as obesity and type 2 diabetes.
Abstract: Alterations in cardiac energy metabolism contribute to the severity of heart failure. However, the energy metabolic changes that occur in heart failure are complex and are dependent not only on the severity and type of heart failure present but also on the co-existence of common comorbidities such as obesity and type 2 diabetes. The failing heart faces an energy deficit, primarily because of a decrease in mitochondrial oxidative capacity. This is partly compensated for by an increase in ATP production from glycolysis. The relative contribution of the different fuels for mitochondrial ATP production also changes, including a decrease in glucose and amino acid oxidation, and an increase in ketone oxidation. The oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in heart failure associated with diabetes and obesity, myocardial fatty acid oxidation increases, while in heart failure associated with hypertension or ischemia, myocardial fatty acid oxidation decreases. Combined, these energy metabolic changes result in the failing heart becoming less efficient (ie, a decrease in cardiac work/O2 consumed). The alterations in both glycolysis and mitochondrial oxidative metabolism in the failing heart are due to both transcriptional changes in key enzymes involved in these metabolic pathways, as well as alterations in NAD redox state (NAD+ and nicotinamide adenine dinucleotide levels) and metabolite signaling that contribute to posttranslational epigenetic changes in the control of expression of genes encoding energy metabolic enzymes. Alterations in the fate of glucose, beyond flux through glycolysis or glucose oxidation, also contribute to the pathology of heart failure. Of importance, pharmacological targeting of the energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac efficiency, decreasing the energy deficit and improving cardiac function in the failing heart.

215 citations


Journal ArticleDOI
25 May 2021
TL;DR: In this paper, abnormalities in glycometabolic control, insulin resistance and beta cell function in patients with COVID-19 without any pre-existing history or diagnosis of diabetes, and document glycaemic abnormalities in recovered patients 2 months after onset of disease.
Abstract: Patients with coronavirus disease 2019 (COVID-19) are reported to have a greater prevalence of hyperglycaemia. Cytokine release as a consequence of severe acute respiratory syndrome coronavirus 2 infection may precipitate the onset of metabolic alterations by affecting glucose homeostasis. Here we describe abnormalities in glycometabolic control, insulin resistance and beta cell function in patients with COVID-19 without any pre-existing history or diagnosis of diabetes, and document glycaemic abnormalities in recovered patients 2 months after onset of disease. In a cohort of 551 patients hospitalized for COVID-19 in Italy, we found that 46% of patients were hyperglycaemic, whereas 27% were normoglycaemic. Using clinical assays and continuous glucose monitoring in a subset of patients, we detected altered glycometabolic control, with insulin resistance and an abnormal cytokine profile, even in normoglycaemic patients. Glycaemic abnormalities can be detected for at least 2 months in patients who recovered from COVID-19. Our data demonstrate that COVID-19 is associated with aberrant glycometabolic control, which can persist even after recovery, suggesting that further investigation of metabolic abnormalities in the context of long COVID is warranted.

198 citations


Journal ArticleDOI
Ji Chen1, Ji Chen2, Cassandra N. Spracklen3, Cassandra N. Spracklen4  +475 moreInstitutions (146)
TL;DR: This paper aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available.
Abstract: Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.

178 citations


Journal ArticleDOI
TL;DR: Peroxisome proliferator-activated receptor-α (PPARα), PPARδ and PPARγ are transcription factors that regulate gene expression following ligand activation as discussed by the authors.
Abstract: Peroxisome proliferator-activated receptor-α (PPARα), PPARδ and PPARγ are transcription factors that regulate gene expression following ligand activation. PPARα increases cellular fatty acid uptake, esterification and trafficking and regulates lipoprotein metabolism genes. PPARδ stimulates lipid and glucose utilization by increasing mitochondrial function and fatty acid desaturation pathways. By contrast, PPARγ promotes fatty acid uptake, triglyceride formation and storage in lipid droplets, thereby improving insulin sensitivity and glucose metabolism. PPARs also exert anti-atherogenic and anti-inflammatory effects on the vascular wall and immune cells. Clinically, PPARγ activation by glitazones and PPARα activation by fibrates improve insulin resistance and dyslipidaemia, respectively. PPARs are also physiological master switches in the heart, steering cardiac energy metabolism in cardiomyocytes, thereby affecting pathological heart failure and diabetic cardiomyopathy. Novel PPAR agonists in clinical development are providing new opportunities in the management of metabolic and cardiovascular diseases.

166 citations


Journal ArticleDOI
11 Jun 2021-Science
TL;DR: In this paper, a 10-week, randomized, placebo-controlled, double-blind trial was conducted to evaluate the effect of NMN supplementation on metabolic function in postmenopausal women with prediabetes who were overweight or obese.
Abstract: In rodents, obesity and aging impair nicotinamide adenine dinucleotide (NAD+) biosynthesis, which contributes to metabolic dysfunction. Nicotinamide mononucleotide (NMN) availability is a rate-limiting factor in mammalian NAD+ biosynthesis. We conducted a 10-week, randomized, placebo-controlled, double-blind trial to evaluate the effect of NMN supplementation on metabolic function in postmenopausal women with prediabetes who were overweight or obese. Insulin-stimulated glucose disposal, assessed by using the hyperinsulinemic-euglycemic clamp, and skeletal muscle insulin signaling [phosphorylation of protein kinase AKT and mechanistic target of rapamycin (mTOR)] increased after NMN supplementation but did not change after placebo treatment. NMN supplementation up-regulated the expression of platelet-derived growth factor receptor β and other genes related to muscle remodeling. These results demonstrate that NMN increases muscle insulin sensitivity, insulin signaling, and remodeling in women with prediabetes who are overweight or obese (clinicaltrial.gov NCT 03151239).

146 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examined how different types of dietary fiber can differentially alter glucose and lipid metabolism through changes in gut microbiota composition and function, suggesting a causative link between diet, microbes and disease.
Abstract: Dietary fibre has long been established as a nutritionally important, health-promoting food ingredient. Modern dietary practices have seen a significant reduction in fibre consumption compared with ancestral habits. This is related to the emergence of low-fibre “Western diets” associated with industrialised nations, and is linked to an increased prevalence of gut diseases such as inflammatory bowel disease, obesity, type II diabetes mellitus and metabolic syndrome. The characteristic metabolic parameters of these individuals include insulin resistance, high fasting and postprandial glucose, as well as high plasma cholesterol, low-density lipoprotein (LDL) and high-density lipoprotein (HDL). Gut microbial signatures are also altered significantly in these cohorts, suggesting a causative link between diet, microbes and disease. Dietary fibre consumption has been hypothesised to reverse these changes through microbial fermentation and the subsequent production of short-chain fatty acids (SCFA), which improves glucose and lipid parameters in individuals who harbour diseases associated with dysfunctional metabolism. This review article examines how different types of dietary fibre can differentially alter glucose and lipid metabolism through changes in gut microbiota composition and function.

133 citations


Journal ArticleDOI
TL;DR: A review of the causes of insulin resistance can be found in this article, which suggests that insulin resistance is a heterogeneous disorder that may variably arise in a range of metabolic tissues and that the mechanism for this effect likely involves a unified insulin resistance pathway that affects a distal step in the insulin action pathway.
Abstract: Insulin resistance, defined as a defect in insulin-mediated control of glucose metabolism in tissues — prominently in muscle, fat and liver — is one of the earliest manifestations of a constellation of human diseases that includes type 2 diabetes and cardiovascular disease. These diseases are typically associated with intertwined metabolic abnormalities, including obesity, hyperinsulinaemia, hyperglycaemia and hyperlipidaemia. Insulin resistance is caused by a combination of genetic and environmental factors. Recent genetic and biochemical studies suggest a key role for adipose tissue in the development of insulin resistance, potentially by releasing lipids and other circulating factors that promote insulin resistance in other organs. These extracellular factors perturb the intracellular concentration of a range of intermediates, including ceramide and other lipids, leading to defects in responsiveness of cells to insulin. Such intermediates may cause insulin resistance by inhibiting one or more of the proximal components in the signalling cascade downstream of insulin (insulin receptor, insulin receptor substrate (IRS) proteins or AKT). However, there is now evidence to support the view that insulin resistance is a heterogeneous disorder that may variably arise in a range of metabolic tissues and that the mechanism for this effect likely involves a unified insulin resistance pathway that affects a distal step in the insulin action pathway that is more closely linked to the terminal biological response. Identifying these targets is of major importance, as it will reveal potential new targets for treatments of diseases associated with insulin resistance. Insulin resistance is one of the earliest manifestations of several human diseases, including type 2 diabetes and cardiovascular disease. This Review discusses the causes of insulin resistance and recent insights into the underlying mechanisms, providing directions for the development of novel therapeutic strategies

133 citations


Journal ArticleDOI
TL;DR: In this article, the authors explore the latest relevant literature and discuss the ongoing therapeutic options for NAFLD focused on targeting intermediary metabolism, insulin resistance and T2DM to remedy the global health burden of these diseases.
Abstract: Non-alcoholic fatty liver disease (NAFLD) has emerged as the most prevalent liver disease in the world, yet there are still no approved pharmacological therapies to prevent or treat this condition. NAFLD encompasses a spectrum of severity, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Although NASH is linked to an increased risk of hepatocellular carcinoma and cirrhosis and has now become the leading cause of liver failure-related transplantation, the majority of patients with NASH will ultimately die as a result of complications of type 2 diabetes mellitus (T2DM) and cardiometabolic diseases. Importantly, NAFLD is closely linked to obesity and tightly interrelated with insulin resistance and T2DM. Thus, targeting these interconnected conditions and taking a holistic attitude to the treatment of metabolic disease could prove to be a very beneficial approach. This Review will explore the latest relevant literature and discuss the ongoing therapeutic options for NAFLD focused on targeting intermediary metabolism, insulin resistance and T2DM to remedy the global health burden of these diseases.

132 citations


Journal ArticleDOI
TL;DR: In this paper, the importance of white adipocyte hypertrophy and the interplay between metabolic pathways explains the fine-tuning between the anabolic and catabolic fates of fatty acids and glucose in different physiological states.
Abstract: In mammals, the white adipocyte is a cell type that is specialized for storage of energy (in the form of triacylglycerols) and for energy mobilization (as fatty acids). White adipocyte metabolism confers an essential role to adipose tissue in whole-body homeostasis. Dysfunction in white adipocyte metabolism is a cardinal event in the development of insulin resistance and associated disorders. This Review focuses on our current understanding of lipid and glucose metabolic pathways in the white adipocyte. We survey recent advances in humans on the importance of adipocyte hypertrophy and on the in vivo turnover of adipocytes and stored lipids. At the molecular level, the identification of novel regulators and of the interplay between metabolic pathways explains the fine-tuning between the anabolic and catabolic fates of fatty acids and glucose in different physiological states. We also examine the metabolic alterations involved in the genesis of obesity-associated metabolic disorders, lipodystrophic states, cancers and cancer-associated cachexia. New challenges include defining the heterogeneity of white adipocytes in different anatomical locations throughout the lifespan and investigating the importance of rhythmic processes. Targeting white fat metabolism offers opportunities for improved patient stratification and a wide, yet unexploited, range of therapeutic opportunities.

124 citations


Journal ArticleDOI
TL;DR: In this paper, the authors highlight the potential mechanisms behind obesity-associated insulin resistance and suggest that the liver is the most sensitive organ undergoing insulin impairment faster than other organs, and thus, hepatic insulin resistance is the primary event that leads to the subsequent development of peripheral tissue insulin resistance.

Journal ArticleDOI
01 Apr 2021
TL;DR: In this paper, protocols for producing STZ-induced insulin deficiency and hyperglycemia in mice and rats were described for assessing the pathological consequences of diabetes and for screening potential therapies for the treatment of this condition.
Abstract: Streptozotocin (STZ) is an antibiotic that causes pancreatic islet β-cell destruction and is widely used experimentally to produce a model of type 1 diabetes mellitus (T1DM). Detailed in this article are protocols for producing STZ-induced insulin deficiency and hyperglycemia in mice and rats. Also described are protocols for creating animal models for type 2 diabetes using STZ. These animals are employed for assessing the pathological consequences of diabetes and for screening potential therapies for the treatment of this condition. © 2021 The Authors.

Journal ArticleDOI
TL;DR: The role of SGK-1 in the pathogenesis of increased vascular stiffness and impaired vascular relaxation and vascular stiffness in the cardiometabolic syndrome (CMS) and obesity is examined in this paper.
Abstract: The cardiometabolic syndrome (CMS) and obesity are typically characterized by a state of metabolic insulin resistance. As global and US rates of obesity increase there is an acceleration of the incidence and prevalence of insulin resistance along with associated cardiovascular disease (CVD). Under physiological conditions insulin regulates glucose homeostasis by enhancing glucose disposal in insulin sensitive tissues while also regulating delivery of nutrients through its vasodilation actions on small feed arteries. Specifically, insulin-mediated production of nitric oxide (NO) from the vascular endothelium leads to increased blood flow enhancing disposal of glucose. Typically, insulin resistance is considered as a decrease in sensitivity or responsiveness to the metabolic actions of insulin including insulin-mediated glucose disposal. However, a decreased sensitivity to the normal vascular actions of insulin, especially diminished nitric oxide production, plays an additional important role in the development of CVD in states of insulin resistance. One mechanism by which insulin resistance and attendant hyperinsulinemia promote CVD is via increases in vascular stiffness. Although obesity and insulin resistance are known to be associated with substantial increases in the prevalence of vascular fibrosis and stiffness the mechanisms and mediators that underlie vascular stiffening in insulin resistant states are complex and have only recently begun to be addressed. Current evidence supports the role of increased plasma levels of aldosterone and insulin and attendant reductions in bioavailable NO in the pathogenesis of impaired vascular relaxation and vascular stiffness in the CMS and obesity. Aldosterone and insulin both increase the activity of serum and glucocorticoid kinase 1 (SGK-1) which in turn is a major regulator of vascular and renal sodium (Na+) channel activity.The importance of SGK-1 in the pathogenesis of the CMS is highlighted by observations that gain of function mutations in SGK-1 in humans promotes hypertension, insulin resistance and obesity. In endothelial cells, an increase in Na+ flux contributes to remodeling of the cytoskeleton, reduced NO bioavailability and vascular stiffening. Thus, endothelial SGK-1 may represent a point of convergence for insulin and aldosterone signaling in arterial stiffness associated with obesity and the CMS. This review examines our contemporary understanding of the link between insulin resistance and increased vascular stiffness with emphasis placed on a role for enhanced SGK-1 signaling as a key node in this pathological process.

Journal ArticleDOI
TL;DR: The role of autophagy in the pathogenesis of metabolic diseases associated with or occurring in the context of ageing, including insulin resistance, T2DM and sarcopenic obesity, was discussed in this article.
Abstract: Autophagy is an evolutionarily conserved, lysosome-dependent catabolic process whereby cytoplasmic components, including damaged organelles, protein aggregates and lipid droplets, are degraded and their components recycled. Autophagy has an essential role in maintaining cellular homeostasis in response to intracellular stress; however, the efficiency of autophagy declines with age and overnutrition can interfere with the autophagic process. Therefore, conditions such as sarcopenic obesity, insulin resistance and type 2 diabetes mellitus (T2DM) that are characterized by metabolic derangement and intracellular stresses (including oxidative stress, inflammation and endoplasmic reticulum stress) also involve the accumulation of damaged cellular components. These conditions are prevalent in ageing populations. For example, sarcopenia is an age-related loss of skeletal muscle mass and strength that is involved in the pathogenesis of both insulin resistance and T2DM, particularly in elderly people. Impairment of autophagy results in further aggravation of diabetes-related metabolic derangements in insulin target tissues, including the liver, skeletal muscle and adipose tissue, as well as in pancreatic β-cells. This Review summarizes the role of autophagy in the pathogenesis of metabolic diseases associated with or occurring in the context of ageing, including insulin resistance, T2DM and sarcopenic obesity, and describes its potential as a therapeutic target. The cellular consequences of dysfunctional autophagy contribute to numerous diseases. In this Review, Kitada and Koya consider the relationship between impaired autophagy and age-related metabolic derangements, including insulin resistance, type 2 diabetes mellitus and sarcopenic obesity, and discuss candidate autophagy-based therapies.

Journal ArticleDOI
01 Jan 2021
TL;DR: In this article, a review mainly discusses the significance of brown and beige adipose tissues in the treatment of obesity and type 2 diabetes mellitus (T2DM), and focuses on the effect of the browning agent on obesity and T2DM.
Abstract: Mammalian adipose tissue can be divided into two major types, namely, white adipose tissue (WAT) and brown adipose tissue (BAT). According to classical view, the main function of WAT is to store excess energy in the form of triglycerides, while BAT is a thermogenic tissue that acts a pivotal part in maintaining the core body temperature. White adipocytes display high plasticity and can transdifferentiate into beige adipocytes which have many similar morphological and functional properties with brown adipocytes under the stimulations of exercise, cold exposure and other factors. This phenomenon is also known as 'browning of WAT'. In addition to transdifferentiation, beige adipocytes can also come from de novo differentiation from tissue-resident progenitors. Activating BAT and inducing browning of WAT can accelerate the intake of glycolipids and reduce the insulin secretion requirement, which may be a new strategy to improve glycolipids metabolism and insulin resistance of obese and type 2 diabetes mellitus (T2DM) patients. This review mainly discusses the significance of brown and beige adipose tissues in the treatment of obesity and T2DM, and focuses on the effect of the browning agent on obesity and T2DM, which provides a brand-new theoretical reference for the prevention and treatment of obesity and T2DM.

Journal ArticleDOI
TL;DR: In this article, the authors discuss the most important evidence concerning the role of the process of chronic inflammation in pathogenesis of polycystic ovarian syndrome (PCOS) and discuss the mutual impact of hyperinsulinemia and obesity, hyperandrogenism, and inflammatory state.
Abstract: Polycystic ovary syndrome (PCOS) is a one of the most common endocrine disorders, with a prevalence rate of 5–10% in reproductive aged women It’s characterized by (1) chronic anovulation, (2) biochemical and/or clinical hyperandrogenism, and (3) polycystic ovarian morphology PCOS has significant clinical implications and can lead to health problems related to the accumulation of adipose tissue, such as obesity, insulin resistance, metabolic syndrome, and type 2 diabetes There is also evidence that PCOS patients are at higher risk of cardiovascular diseases, atherosclerosis, and high blood pressure Several studies have reported the association between polycystic ovary syndrome (PCOS) and low-grade chronic inflammation According to known data, inflammatory markers or their gene markers are higher in PCOS patients Correlations have been found between increased levels of C-reactive protein (CRP), interleukin 18 (IL-18), tumor necrosis factor (TNF-α), interleukin 6 (IL-6), white blood cell count (WBC), monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α) in the PCOS women compared with age- and BMI-matched controls Women with PCOS present also elevated levels of AGEs and increased RAGE (receptor for advanced glycation end products) expression This chronic inflammatory state is aggravating by obesity and hyperinsulinemia There are studies describing mutual impact of hyperinsulinemia and obesity, hyperandrogenism, and inflammatory state Endothelial cell dysfunction may be also triggered by inflammatory cytokines Many factors involved in oxidative stress, inflammation, and thrombosis were proposed as cardiovascular risk markers showing the endothelial cell damage in PCOS Those markers include asymmetric dimethylarginine (ADMA), C-reactive protein (CRP), homocysteine, plasminogen activator inhibitor-I (PAI-I), PAI-I activity, vascular endothelial growth factor (VEGF) etc It was also proposed that the uterine hyperinflammatory state in polycystic ovary syndrome may be responsible for significant pregnancy complications ranging from miscarriage to placental insufficiency In this review, we discuss the most importance evidence concerning the role of the process of chronic inflammation in pathogenesis of PCOS

Journal ArticleDOI
TL;DR: The purpose of this review is to provide an overview from the syndrome epidemiology, costs, and main etiological traits from its relationship with unhealthy diet patterns and sedentary lifestyles.
Abstract: Metabolic syndrome (MetS) is a cluster of cardiometabolic risk factors with high prevalence among adult populations and elevated costs for public health systems worldwide. Despite the lack of consensus regarding the syndrome definition and diagnosis criteria, it is characterized by the coexistence of risk factors such as abdominal obesity, atherogenic dyslipidemia, elevated blood pressure, a prothrombotic and pro-inflammatory state, insulin resistance (IR), and higher glucose levels, factors indubitably linked to an increased risk of developing chronic conditions, such as type 2 diabetes (T2D) and cardiovascular disease (CVD). The syndrome has a complex and multifaceted origin not fully understood; however, it has been strongly suggested that sedentarism and unbalanced dietary patterns might play a fundamental role in its development. The purpose of this review is to provide an overview from the syndrome epidemiology, costs, and main etiological traits from its relationship with unhealthy diet patterns and sedentary lifestyles.

Journal ArticleDOI
TL;DR: This paper showed that miR-690 is highly expressed in M2 BMDM exosomes and functions as an insulin sensitizer both in vivo and in vitro, which could be a new therapeutic insulin-sensitizing agent for metabolic disease.


Journal ArticleDOI
TL;DR: Tirzepatide improved markers of IS and beta-cell function to a greater extent than dulaglutide and was only partly attributable to WL, suggesting dual receptor agonism confers distinct mechanisms of glycemic control.
Abstract: CONTEXT Novel dual glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) receptor agonist (RA) tirzepatide demonstrated substantially greater glucose control and weight loss (WL) compared with selective GLP-1RA dulaglutide. OBJECTIVE Explore mechanisms of glucose control by tirzepatide. DESIGN Post hoc analyses of fasting biomarkers and multiple linear regression analysis. SETTING Forty-seven sites in 4 countries. PATIENTS OR OTHER PARTICIPANTS Three hundred and sixteen subjects with type 2 diabetes. INTERVENTIONS Tirzepatide (1, 5, 10, 15 mg), dulaglutide (1.5 mg), placebo. MAIN OUTCOME MEASURES Analyze biomarkers of beta-cell function and insulin resistance (IR) and evaluate WL contributions to IR improvements at 26 weeks. RESULTS Homeostatic model assessment (HOMA) 2-B significantly increased with dulaglutide and tirzepatide 5, 10, and 15 mg compared with placebo (P ≤ .02). Proinsulin/insulin and proinsulin/C-peptide ratios significantly decreased with tirzepatide 10 and 15 mg compared with placebo and dulaglutide (P ≤ .007). Tirzepatide 10 and 15 mg significantly decreased fasting insulin (P ≤ .033) and tirzepatide 10 mg significantly decreased HOMA2-IR (P = .004) compared with placebo and dulaglutide. Markers of improved insulin sensitivity (IS) adiponectin, IGFBP-1, and IGFBP-2 significantly increased by 1 or more doses of tirzepatide (P < .05). To determine whether improvements in IR were directly attributable to WL, multiple linear regression analysis with potential confounding variables age, sex, metformin, triglycerides, and glycated hemoglobin A1c was conducted. WL significantly (P ≤ .028) explained only 13% and 21% of improvement in HOMA2-IR with tirzepatide 10 and 15 mg, respectively. CONCLUSIONS Tirzepatide improved markers of IS and beta-cell function to a greater extent than dulaglutide. IS effects of tirzepatide were only partly attributable to WL, suggesting dual receptor agonism confers distinct mechanisms of glycemic control.

Journal ArticleDOI
TL;DR: The relationship between COVID-19 and diabetes mellitus is complicated and bidirectional as discussed by the authors, and the challenges in understanding the interrelationship between the two conditions remain, although more knowledge gradually surfaces as the pandemic progresses.
Abstract: The relationship between COVID-19 and diabetes mellitus is complicated and bidirectional. On the one hand, diabetes mellitus is considered one of the most important risk factors for a severe course of COVID-19. Several factors that are often present in diabetes mellitus are likely to contribute to this risk, such as older age, a proinflammatory and hypercoagulable state, hyperglycemia and underlying comorbidities (hypertension, cardiovascular disease, chronic kidney disease and obesity). On the other hand, a severe COVID-19 infection, and its treatment with steroids, can have a specific negative impact on diabetes itself, leading to worsening of hyperglycemia through increased insulin resistance and reduced β-cell secretory function. Worsening hyperglycemia can, in turn, adversely affect the course of COVID-19. Although more knowledge gradually surfaces as the pandemic progresses, challenges in understanding the interrelationship between COVID-19 and diabetes remain.

Journal ArticleDOI
TL;DR: In this article, the authors show that an increase in homocysteine (Hcy) level is associated with insulin resistance and type 2 diabetes phenotype, however, the causality between them and the underlying mechanism remain elusive.

Journal ArticleDOI
TL;DR: This review summarizes available evidence on this topic, in order to better understand the complex relationships linking hyperandrogenism and impaired insulin action in women with PCOS.
Abstract: PCOS is a common and heterogeneous endocrine disorder in women of reproductive age, frequently associated with metabolic abnormalities. It was estimated that about 75% of these subjects have an impairment of insulin action, as measured by gold standard methods. While the relationship between insulin resistance and PCOS is consistently shown by a number of studies, the mechanisms underlying its primary origin still remains an unsolved issue. Insulin resistance and the associated hyperinsulinemia can induce both the endocrine and reproductive traits of PCOS. However, androgen excess, in turn, can impair insulin action, directly and/or through several changes occurring in different tissues. Body fat excess, which is another common feature in these women, can contribute to worsening the whole picture. Nevertheless, insulin resistance may also be found in many normal-weight individuals. Endocrine and metabolic abnormalities can develop in different moments, and probably there is fetal programming of these alterations. However, a number of vicious circles, with bidirectional relationships between androgen excess and insulin resistance, and with the contribution of several other factors, make it extremely difficult to understand where this process really originates. This review summarizes available evidence on this topic, in order to better understand the complex relationships linking hyperandrogenism and impaired insulin action in women with PCOS.

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the discoveries that have led to the current understanding of how insulin promotes glucose uptake in muscle, and touch upon insulin access to muscle and insulin signaling toward glycogen, lipid, and protein metabolism.

Journal ArticleDOI
TL;DR: The authors discussed the characteristics of chronic inflammation in the major metabolic tissues and how obesity triggers these events, including a focus on the role of adipose tissue hypoxia and macrophage-derived exosomes.
Abstract: Obesity is the most common cause of insulin resistance, and the current obesity epidemic is driving a parallel rise in the incidence of T2DM. It is now widely recognized that chronic, subacute tissue inflammation is a major etiologic component of the pathogenesis of insulin resistance and metabolic dysfunction in obesity. Here, we summarize recent advances in our understanding of immunometabolism. We discuss the characteristics of chronic inflammation in the major metabolic tissues and how obesity triggers these events, including a focus on the role of adipose tissue hypoxia and macrophage-derived exosomes. Last, we also review current and potential new therapeutic strategies based on immunomodulation.

Journal ArticleDOI
TL;DR: In this paper, the authors used a training model with a progressively increasing exercise load during an intervention over 4 weeks, and they found a striking reduction in intrinsic mitochondrial function that coincided with a disturbance in glucose tolerance and insulin secretion.

Journal ArticleDOI
TL;DR: In this paper, the authors consider the risk of metabolic syndrome as a risk factor for cardiovascular disease, regardless of age, sex, smoking habit, cholesterolemia, and other elements of MS, and suggest that lifestyle modifications (diet, physical exercise, and weight loss) determine an improvement in IR, MS and both clinical and histologic liver picture.
Abstract: Non-alcoholic fatty liver disease (NAFLD) and metabolic syndrome (MS) are two different entities sharing common clinical and physio-pathological features, with insulin resistance (IR) as the most relevant. Large evidence leads to consider it as a risk factor for cardiovascular disease, regardless of age, sex, smoking habit, cholesterolemia, and other elements of MS. Therapeutic strategies remain still unclear, but lifestyle modifications (diet, physical exercise, and weight loss) determine an improvement in IR, MS, and both clinical and histologic liver picture. NAFLD and IR are bidirectionally correlated and, consequently, the development of pre-diabetes and diabetes is the most direct consequence at the extrahepatic level. In turn, type 2 diabetes is a well-known risk factor for multiorgan damage, including an involvement of cardiovascular system, kidney and peripheral nervous system. The increased MS incidence worldwide, above all due to changes in diet and lifestyle, is associated with an equally significant increase in NAFLD, with a subsequent rise in both morbidity and mortality due to both metabolic, hepatic and cardiovascular diseases. Therefore, the slowdown in the increase of the “bad company” constituted by MS and NAFLD, with all the consequent direct and indirect costs, represents one of the main challenges for the National Health Systems.

Journal ArticleDOI
TL;DR: In this article, aryl hydrocarbon receptor mediated signalling pathway in the liver by faecal exosomes derived from intestinal cells was found to be involved in the development of insulin resistance.
Abstract: High-fat diet (HFD) decreases insulin sensitivity. How high-fat diet causes insulin resistance is largely unknown. Here, we show that lean mice become insulin resistant after being administered exosomes isolated from the feces of obese mice fed a HFD or from patients with type II diabetes. HFD altered the lipid composition of exosomes from predominantly phosphatidylethanolamine (PE) in exosomes from lean animals (L-Exo) to phosphatidylcholine (PC) in exosomes from obese animals (H-Exo). Mechanistically, we show that intestinal H-Exo is taken up by macrophages and hepatocytes, leading to inhibition of the insulin signaling pathway. Moreover, exosome-derived PC binds to and activates AhR, leading to inhibition of the expression of genes essential for activation of the insulin signaling pathway, including IRS-2, and its downstream genes PI3K and Akt. Together, our results reveal HFD-induced exosomes as potential contributors to the development of insulin resistance. Intestinal exosomes thus have potential as broad therapeutic targets. High-fat diet plays a role in development of insulin resistance. Here, the authors report a mechanism that underlies the development of diet induced insulin resistance through the activation of an aryl hydrocarbon receptor mediated signalling pathway in the liver by faecal exosomes derived from intestinal cells.

Journal ArticleDOI
TL;DR: In this paper, the effect of quercetin on the improvement of the signs of MetS, including elevated glucose level, hyperlipidemia, obesity, and blood pressure, is discussed.
Abstract: Metabolic syndrome (MetS) is a complex of diseases that lead to mortality due to the development of cardiovascular problems. Quercetin, as an important flavonoid, has various properties such as decreasing blood pressure, anti-hyperlipidemia, anti-hyperglycemia, anti-oxidant, antiviral, anticancer, anti-inflammatory, anti-microbial, neuroprotective, and cardio-protective effects. In this review article, we collected original articles from different sources such as Google Scholar, Medline, Scopus, and Pubmed, which is related to the effect of quercetin on the improvement of the signs of MetS, including elevated glucose level, hyperlipidemia, obesity, and blood pressure. According to these data, quercetin may also have a role in the management of metabolic disorders via different mechanisms such as increasing adiponectin, decreasing leptin, anti-oxidant activity, reduction of insulin resistance, the elevation of insulin level, and blocking of calcium channel. We have attempted to make some recommendations on the quercetin application in patients. However, it needs to do further clinical trials and more investigations to show the real clinical value of quercetin on metabolic syndrome.

Journal ArticleDOI
TL;DR: A systematic literature review as discussed by the authors identified recent epidemiological, biomarker, genetic and clinical evidence that expands our understanding of nonalcoholic fatty liver disease (NAFLD) as a metabolic disorder.
Abstract: Aims To conduct a systematic literature review to identify recent epidemiological, biomarker, genetic and clinical evidence that expands our understanding of nonalcoholic fatty liver disease (NAFLD) as a metabolic disorder. Materials and methods We performed a literature search using PubMed to identify trials, observational studies and meta-analyses published in the past 5 years. Results A total of 95 publications met prespecified inclusion criteria and reported on the interplay between NAFLD/nonalcoholic steatohepatitis (NASH) and metabolic dysfunction, in terms of disease burden and/or epidemiology (n = 10), pathophysiology, risk factors and associated conditions (n = 29), diagnosis and biomarkers (n = 34), and treatment approaches (n = 22). There is a growing body of evidence on the links between NAFLD/NASH pathogenesis and mechanisms of metabolic dysfunction, through liver lipid accumulation, insulin resistance, inflammation, apoptosis, and fibrogenic remodelling within the liver. The frequent co-occurrence of NAFLD with obesity, metabolic syndrome and type 2 diabetes supports this premise. Therapeutic approaches originally envisaged for type 2 diabetes or obesity (such as glucagon-like peptide-1 receptor agonists, sodium-glucose co-transporter-2 inhibitors, insulin sensitizers and bariatric surgery) have shown promising signs of benefit for patients with NAFLD/NASH. Conclusions Given the complex interplay between NAFLD and metabolic dysfunction, there is an urgent need for multidisciplinary collaboration and established protocols for care of patients with NAFLD that are individualized and ideally support reduction of overall metabolic risk as well as treatment for NASH.