scispace - formally typeset
Search or ask a question
Topic

Integer programming

About: Integer programming is a research topic. Over the lifetime, 25381 publications have been published within this topic receiving 618828 citations.


Papers
More filters
Book
01 Jan 1996
TL;DR: The Simplex Method in Matrix Notation and Duality Theory, and Applications: Foundations of Convex Programming.
Abstract: Preface. Part 1: Basic Theory - The Simplex Method and Duality. 1. Introduction. 2. The Simplex Method. 3. Degeneracy. 4. Efficiency of the Simplex Method. 5. Duality Theory. 6. The Simplex Method in Matrix Notation. 7. Sensitivity and Parametric Analyses. 8. Implementation Issues. 9. Problems in General Form. 10. Convex Analysis. 11. Game Theory. 12. Regression. Part 2: Network-Type Problems. 13. Network Flow Problems. 14. Applications. 15. Structural Optimization. Part 3: Interior-Point Methods. 16. The Central Path. 17. A Path-Following Method. 18. The KKT System. 19. Implementation Issues. 20. The Affine-Scaling Method. 21. The Homogeneous Self-Dual Method. Part 4: Extensions. 22. Integer Programming. 23. Quadratic Programming. 24. Convex Programming. Appendix A: Source Listings. Answers to Selected Exercises. Bibliography. Index.

1,194 citations

Journal ArticleDOI
TL;DR: An overview of the main design concepts of SCIP and how it can be used to solve constraint integer programs is given and experimental results show that the approach outperforms current state-of-the-art techniques for proving the validity of properties on circuits containing arithmetic.
Abstract: Constraint integer programming (CIP) is a novel paradigm which integrates constraint programming (CP), mixed integer programming (MIP), and satisfiability (SAT) modeling and solving techniques. In this paper we discuss the software framework and solver SCIP (Solving Constraint Integer Programs), which is free for academic and non-commercial use and can be downloaded in source code. This paper gives an overview of the main design concepts of SCIP and how it can be used to solve constraint integer programs. To illustrate the performance and flexibility of SCIP, we apply it to two different problem classes. First, we consider mixed integer programming and show by computational experiments that SCIP is almost competitive to specialized commercial MIP solvers, even though SCIP supports the more general constraint integer programming paradigm. We develop new ingredients that improve current MIP solving technology. As a second application, we employ SCIP to solve chip design verification problems as they arise in the logic design of integrated circuits. This application goes far beyond traditional MIP solving, as it includes several highly non-linear constraints, which can be handled nicely within the constraint integer programming framework. We show anecdotally how the different solving techniques from MIP, CP, and SAT work together inside SCIP to deal with such constraint classes. Finally, experimental results show that our approach outperforms current state-of-the-art techniques for proving the validity of properties on circuits containing arithmetic.

1,163 citations

Book ChapterDOI
01 Jan 2010
TL;DR: It is a pleasure to write this commentary because it offers an opportunity to express my gratitude to several people who helped me in ways that turned out to be essential to the birth of [8].
Abstract: It is a pleasure to write this commentary because it offers an opportunity to express my gratitude to several people who helped me in ways that turned out to be essential to the birth of [8]. They also had a good deal to do with shaping my early career and, consequently, much of what followed.

1,101 citations

Journal ArticleDOI
TL;DR: This paper presents a new optimization algorithm capable of optimally solving 100-customer problems of the vehicle routing problem with time windows VRPTW and indicates that this algorithm proved to be successful on a variety of practical sized benchmark VRPTw test problems.
Abstract: The vehicle routing problem with time windows VRPTW is a generalization of the vehicle routing problem where the service of a customer can begin within the time window defined by the earliest and the latest times when the customer will permit the start of service. In this paper, we present the development of a new optimization algorithm for its solution. The LP relaxation of the set partitioning formulation of the VRPTW is solved by column generation. Feasible columns are added as needed by solving a shortest path problem with time windows and capacity constraints using dynamic programming. The LP solution obtained generally provides an excellent lower bound that is used in a branch-and-bound algorithm to solve the integer set partitioning formulation. Our results indicate that this algorithm proved to be successful on a variety of practical sized benchmark VRPTW test problems. The algorithm was capable of optimally solving 100-customer problems. This problem size is six times larger than any reported to date by other published research.

1,085 citations

Journal ArticleDOI
P. C. Gilmore1, Ralph E. Gomory1
TL;DR: The paper describes a new and faster knapsack method, experiments, and formulation changes, and the introduction of a rational objective function when customers' orders are not for fixed amounts, but rather for a range of amounts.
Abstract: In this paper, the methods for stock cutting outlined in an earlier paper in this Journal [Opns Res 9, 849--859 1961] are extended and adapted to the specific full-scale paper trim problem. The paper describes a new and faster knapsack method, experiments, and formulation changes. The experiments include ones used to evaluate speed-up devices and to explore a connection with integer programming. Other experiments give waste as a function of stock length, examine the effect of multiple stock lengths on waste, and the effect of a cutting knife limitation. The formulation changes discussed are i limitation on the number of cutting knives available, n balancing of multiple machine usage when orders are being filled from more than one machine, and m introduction of a rational objective function when customers' orders are not for fixed amounts, but rather for a range of amounts. The methods developed are also applicable to a variety of cutting problems outside of the paper industry.

1,059 citations


Network Information
Related Topics (5)
Scheduling (computing)
78.6K papers, 1.3M citations
94% related
Optimization problem
96.4K papers, 2.1M citations
91% related
Genetic algorithm
67.5K papers, 1.2M citations
85% related
Supply chain
84.1K papers, 1.7M citations
84% related
Robustness (computer science)
94.7K papers, 1.6M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20242
2023864
20222,002
20211,251
20201,324
20191,455