scispace - formally typeset
Search or ask a question
Topic

Integrase

About: Integrase is a research topic. Over the lifetime, 4135 publications have been published within this topic receiving 164211 citations. The topic is also known as: retroviral integrases.


Papers
More filters
Journal ArticleDOI
28 Jan 2000-Science
TL;DR: Diketo acid inhibitors of HIV-1 integrase that manifest antiviral activity as a consequence of their effect on integration are described.
Abstract: Integrase is essential for human immunodeficiency virus-type 1 (HIV-1) replication; however, potent inhibition of the isolated enzyme in biochemical assays has not readily translated into antiviral activity in a manner consistent with inhibition of integration. In this report, we describe diketo acid inhibitors of HIV-1 integrase that manifest antiviral activity as a consequence of their effect on integration. The antiviral activity of these compounds is due exclusively to inhibition of one of the two catalytic functions of integrase, strand transfer.

1,127 citations

Journal ArticleDOI
01 Apr 2004-Genetics
TL;DR: The phiC31 integrase injected into embryos as mRNA functioned to promote integration of an attB-containing plasmid into the attP site, resulting in up to 55% of fertile adults producing transgenic offspring.
Abstract: The phiC31 integrase functions efficiently in vitro and in Escherichia coli, yeast, and mammalian cells, mediating unidirectional site-specific recombination between its attB and attP recognition sites. Here we show that this site-specific integration system also functions efficiently in Drosophila melanogaster in cultured cells and in embryos. Intramolecular recombination in S2 cells on transfected plasmid DNA carrying the attB and attP recognition sites occurred at a frequency of 47%. In addition, several endogenous pseudo attP sites were identified in the fly genome that were recognized by the integrase and used as substrates for integration in S2 cells. Two lines of Drosophila were created by integrating an attP site into the genome with a P element. phiC31 integrase injected into embryos as mRNA functioned to promote integration of an attB-containing plasmid into the attP site, resulting in up to 55% of fertile adults producing transgenic offspring. A total of 100% of these progeny carried a precise integration event at the genomic attP site. These experiments demonstrate the potential for precise genetic engineering of the Drosophila genome with the phiC31 integrase system and will likely benefit research in Drosophila and other insects.

1,073 citations

Journal ArticleDOI
TL;DR: The results indicate that nuclear translocation of the genome is a rate-limiting step in lentiviral infection of both dividing and non-dividing cells, and that it depends on protein and nucleic acid sequence determinants.
Abstract: Gene-transfer vectors based on lentiviruses are distinguished by their ability to transduce non-dividing cells. The HIV-1 proteins Matrix, Vpr and Integrase have been implicated in the nuclear import of the viral genome in non-dividing cells. Here we show that a sequence within pol is also required in cis. It contains structural elements previously associated with the progress of reverse transcription in target cells. We restored these elements in cis within late-generation lentiviral vectors. The new vector transduced to a much higher efficiency several types of human primary cells, when both growing and growth-arrested, including haematopoietic stem cells assayed by long-term repopulation of NOD/SCID mice. On in vivo administration into SCID mice, the vector induced higher plasma levels of human clotting factor IX (F.IX) than non-modified vector. Our results indicate that nuclear translocation of the genome is a rate-limiting step in lentiviral infection of both dividing and non-dividing cells, and that it depends on protein and nucleic acid sequence determinants. Full rescue of this step in lentivirus-based vectors improves performance for gene-therapy applications.

982 citations

Journal ArticleDOI
TL;DR: A review of recent biochemical and structural studies that help clarify the mechanisms of viral assembly, infection, and replication of human immunodeficiency virus type 1.
Abstract: Human immunodeficiency virus type 1 is a complex retrovirus encoding 15 distinct proteins. Substantial progress has been made toward understanding the function of each protein, and three-dimensional structures of many components, including portions of the RNA genome, have been determined. This review describes the function of each component in the context of the viral life cycle: the Gag and Env structural proteins MA (matrix), CA (capsid), NC (nucleocapsid), p6, SU (surface), and TM (transmembrane); the Pol enzymes PR (protease), RT (reverse transcriptase), and IN (integrase); the gene regulatory proteins Tat and Rev; and the accessory proteins Nef, Vif, Vpr, and Vpu. The review highlights recent biochemical and structural studies that help clarify the mechanisms of viral assembly, infection, and replication.

979 citations

Journal ArticleDOI
TL;DR: Purification of the SWI‐SNF2 homologs demonstrates that it is heterogeneous with respect to subunit composition, and certain cell lines completely lack BRG1 and hbrm, indicating that they are not essential for cell viability and that the mammalian SWI-SNF complex may be tailored to the needs of a differentiated cell type.
Abstract: We have purified distinct complexes of nine to 12 proteins [referred to as BRG1-associated factors (BAFs)] from several mammalian cell lines using an antibody to the SWI2-SNF2 homolog BRG1. Microsequencing revealed that the 47 kDa BAF is identical to INI1. Previously INI1 has been shown to interact with and activate human immunodeficiency virus integrase and to be homologous to the yeast SNF5 gene. A group of BAF47-associated proteins were affinity purified with antibodies against INI1/BAF47 and were found to be identical to those co-purified with BRG1, strongly indicating that this group of proteins associates tightly and is likely to be the mammalian equivalent of the yeast SWI-SNF complex. Complexes containing BRG1 can disrupt nucleosomes and facilitate the binding of GAL4-VP16 to a nucleosomal template similar to the yeast SWI-SNF complex. Purification of the complex from several cell lines demonstrates that it is heterogeneous with respect to subunit composition. The two SWI-SNF2 homologs, BRG1 and hbrm, were found in separate complexes. Certain cell lines completely lack BRG1 and hbrm, indicating that they are not essential for cell viability and that the mammalian SWI-SNF complex may be tailored to the needs of a differentiated cell type.

824 citations


Network Information
Related Topics (5)
RNA
111.6K papers, 5.4M citations
85% related
Transcription (biology)
56.5K papers, 2.9M citations
83% related
DNA
107.1K papers, 4.7M citations
82% related
Virus
136.9K papers, 5.2M citations
82% related
Peptide sequence
84.1K papers, 4.3M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023100
2022215
2021106
2020134
2019126
2018115