scispace - formally typeset

Integrating ADC

About: Integrating ADC is a(n) research topic. Over the lifetime, 4513 publication(s) have been published within this topic receiving 65650 citation(s). more

More filters

Proceedings ArticleDOI
07 Aug 2002-
Abstract: A new LLC resonant converter is proposed for front end DC/DC conversion in a distributed power system. Three advantages are achieved with this resonant converter. First, ZVS turn on and low turn off current of MOSFETs are achieved. The switching loss is reduced so we can operate the converter at higher switching frequency. The second advantage is that with this topology, we can optimize the converter at high input voltage. Finally, with this topology, we can eliminate the secondary filter inductor, so the voltage stress on the secondary rectifier will be limited to two times the output voltage, better rectifier diodes can be used and secondary conduction loss can be reduced. The converter utilizes leakage and magnetizing inductance of a transformer. With magnetic integration concept, all the magnetic components can be built in one magnetic core. The operation and characteristic of this converter is introduced and efficiency comparison between this converter and a conventional PWM converter is given which shows a great improvement by using this topology. more

882 citations

21 Mar 2005-
Abstract: A high efficiency power converter comprises a boost converter for converting an input voltage to a first voltage on a first output, a buck converter for converting the input voltage to a second voltage on a second output, a linear regulator for converting the first voltage to a third voltage on the second output when the second voltage is lower than a first threshold, and a voltage detector for detecting the input voltage for preventing a reverse current flowing from the second output to the buck converter when the input voltage is lower than a second threshold. more

572 citations

Journal ArticleDOI
Rong-Jong Wai1, Rou-Yong DuanInstitutions (1)
Abstract: In this study, a high step-up converter with a coupled-inductor is investigated. In the proposed strategy, a coupled inductor with a lower-voltage-rated switch is used for raising the voltage gain (whether the switch is turned on or turned off). Moreover, a passive regenerative snubber is utilized for absorbing the energy of stray inductance so that the switch duty cycle can be operated under a wide range, and the related voltage gain is higher than other coupled-inductor-based converters. In addition, all devices in this scheme also have voltage-clamped properties and their voltage stresses are relatively smaller than the output voltage. Thus, it can select low-voltage low-conduction-loss devices, and there are no reverse-recovery currents within the diodes in this circuit. Furthermore, the closed-loop control methodology is utilized in the proposed scheme to overcome the voltage drift problem of the power source under the load variations. As a result, the proposed converter topology can promote the voltage gain of a conventional boost converter with a single inductor, and deal with the problem of the leakage inductor and demagnetization of transformer for a coupled-inductor-based converter. Some experimental results via examples of a proton exchange membrane fuel cell (PEMFC) power source and a traditional battery are given to demonstrate the effectiveness of the proposed power conversion strategy. more

534 citations

Journal ArticleDOI
K. C. Tseng1, Tsorng-Juu Liang1Institutions (1)
01 Mar 2004-
Abstract: As a result of the equivalent series resistor of the boost inductor, conventional boost converters are not able to provide high voltage gain. A high-efficiency high step-up converter is proposed, with low voltage stress on power switch, power diodes and output capacitors. The circuit topology of the proposed converter consists of an energy clamp circuit and a voltage boost cell. The boost converter functions as an active clamp circuit to suppress the voltage spike on power switch during the turn-off transient period. The boost converter output terminal and flyback converter output terminal are serially connected to increase the output voltage gain with the coupled inductor. By serially connecting the secondary windings of the boost inductor, a high voltage gain is achieved with less voltage stress on the power devices, such as power MOSFET and power diodes. The operational principle and steady-state analysis are described. A 35 W converter with simulation and experimental results is presented to demonstrate the performance. It shows that the efficiency of the proposed converter is very high (nearly 93%) with four times the voltage output. more

438 citations

Journal ArticleDOI
TL;DR: A new topology for cascaded multilevel converter based on submultileVEL converter units and full-bridge converters is proposed, optimized for various objectives, such as the minimization of the number of switches, gate driver circuits and capacitors, and blocking voltage on switches. more

Abstract: In this paper, a new topology for cascaded multilevel converter based on submultilevel converter units and full-bridge converters is proposed. The proposed topology significantly reduces the number of dc voltage sources, switches, IGBTs, and power diodes as the number of output voltage levels increases. Also, an algorithm to determine dc voltage sources magnitudes is proposed. To synthesize maximum levels at the output voltage, the proposed topology is optimized for various objectives, such as the minimization of the number of switches, gate driver circuits and capacitors, and blocking voltage on switches. The analytical analyses of the power losses of the proposed converter are also presented. The operation and performance of the proposed multilevel converter have been evaluated with the experimental results of a single-phase 125-level prototype converter. more

411 citations

Network Information
Related Topics (5)
Total harmonic distortion

23.2K papers, 279.5K citations

90% related
Active filter

16.7K papers, 244.1K citations

89% related

22.4K papers, 387.3K citations

89% related
Switched-mode power supply

44.7K papers, 547.2K citations

89% related
Charge pump

14.3K papers, 182.1K citations

88% related
No. of papers in the topic in previous years

Top Attributes

Show by:

Topic's top 5 most impactful authors

Kuo-Ing Hwu

28 papers, 634 citations

Gun-Woo Moon

17 papers, 418 citations

Tsorng-Juu Liang

15 papers, 1.4K citations

Wen-Zhuang Jiang

11 papers, 107 citations

Lung-Sheng Yang

11 papers, 404 citations