scispace - formally typeset
Search or ask a question
Topic

Intelligent computer network

About: Intelligent computer network is a research topic. Over the lifetime, 10508 publications have been published within this topic receiving 217667 citations.


Papers
More filters
Proceedings ArticleDOI
16 Aug 2009
TL;DR: VL2 is a practical network architecture that scales to support huge data centers with uniform high capacity between servers, performance isolation between services, and Ethernet layer-2 semantics, and is built on a working prototype.
Abstract: To be agile and cost effective, data centers should allow dynamic resource allocation across large server pools. In particular, the data center network should enable any server to be assigned to any service. To meet these goals, we present VL2, a practical network architecture that scales to support huge data centers with uniform high capacity between servers, performance isolation between services, and Ethernet layer-2 semantics. VL2 uses (1) flat addressing to allow service instances to be placed anywhere in the network, (2) Valiant Load Balancing to spread traffic uniformly across network paths, and (3) end-system based address resolution to scale to large server pools, without introducing complexity to the network control plane. VL2's design is driven by detailed measurements of traffic and fault data from a large operational cloud service provider. VL2's implementation leverages proven network technologies, already available at low cost in high-speed hardware implementations, to build a scalable and reliable network architecture. As a result, VL2 networks can be deployed today, and we have built a working prototype. We evaluate the merits of the VL2 design using measurement, analysis, and experiments. Our VL2 prototype shuffles 2.7 TB of data among 75 servers in 395 seconds - sustaining a rate that is 94% of the maximum possible.

2,350 citations

Journal ArticleDOI
TL;DR: The results show that using COPE at the forwarding layer, without modifying routing and higher layers, increases network throughput, and the gains vary from a few percent to several folds depending on the traffic pattern, congestion level, and transport protocol.
Abstract: This paper proposes COPE, a new architecture for wireless mesh networks. In addition to forwarding packets, routers mix (i.e., code) packets from different sources to increase the information content of each transmission. We show that intelligently mixing packets increases network throughput. Our design is rooted in the theory of network coding. Prior work on network coding is mainly theoretical and focuses on multicast traffic. This paper aims to bridge theory with practice; it addresses the common case of unicast traffic, dynamic and potentially bursty flows, and practical issues facing the integration of network coding in the current network stack. We evaluate our design on a 20-node wireless network, and discuss the results of the first testbed deployment of wireless network coding. The results show that using COPE at the forwarding layer, without modifying routing and higher layers, increases network throughput. The gains vary from a few percent to several folds depending on the traffic pattern, congestion level, and transport protocol.

2,190 citations

Book ChapterDOI
01 Jan 2002
TL;DR: This paper presents a potential-field-based approach to deployment of a mobile sensor network, where the fields are constructed such that each node is repelled by both obstacles and by other nodes, thereby forcing the network to spread itself throughout the environment.
Abstract: This paper considers the problem of deploying a mobile sensor network in an unknown environment. A mobile sensor network is composed of a distributed collection of nodes, each of which has sensing, computation, communication and locomotion capabilities. Such networks are capable of self-deployment; i.e., starting from some compact initial configuration, the nodes in the network can spread out such that the area ‘covered’ by the network is maximized. In this paper, we present a potential-field-based approach to deployment. The fields are constructed such that each node is repelled by both obstacles and by other nodes, thereby forcing the network to spread itself throughout the environment. The approach is both distributed and scalable.

1,273 citations

Journal ArticleDOI
TL;DR: Three problems in network management are identified: enabling frequent changes to network conditions and state, providing support for network configuration in a highlevel language, and providing better visibility and control over tasks for performing network diagnosis and troubleshooting.
Abstract: Network management is challenging. To operate, maintain, and secure a communication network, network operators must grapple with low-level vendor-specific configuration to implement complex high-level network policies. Despite many previous proposals to make networks easier to manage, many solutions to network management problems amount to stop-gap solutions because of the difficulty of changing the underlying infrastructure. The rigidity of the underlying infrastructure presents few possibilities for innovation or improvement, since network devices have generally been closed, proprietary, and vertically integrated. A new paradigm in networking, software defined networking (SDN), advocates separating the data plane and the control plane, making network switches in the data plane simple packet forwarding devices and leaving a logically centralized software program to control the behavior of the entire network. SDN introduces new possibilities for network management and configuration methods. In this article, we identify problems with the current state-of-the-art network configuration and management mechanisms and introduce mechanisms to improve various aspects of network management. We focus on three problems in network management: enabling frequent changes to network conditions and state, providing support for network configuration in a highlevel language, and providing better visibility and control over tasks for performing network diagnosis and troubleshooting. The technologies we describe enable network operators to implement a wide range of network policies in a high-level policy language and easily determine sources of performance problems. In addition to the systems themselves, we describe various prototype deployments in campus and home networks that demonstrate how SDN can improve common network management tasks.

1,122 citations

Book
01 Jan 2004
TL;DR: Throughout, the authors focus on the traffic demands encountered in the real world of network design, and their generic approach allows problem formulations and solutions to be applied across the board to virtually any type of backbone communication or computer network.
Abstract: In network design, the gap between theory and practice is woefully broad. This book narrows it, comprehensively and critically examining current network design models and methods. You will learn where mathematical modeling and algorithmic optimization have been under-utilized. At the opposite extreme, you will learn where they tend to fail to contribute to the twin goals of network efficiency and cost-savings. Most of all, you will learn precisely how to tailor theoretical models to make them as useful as possible in practice. Throughout, the authors focus on the traffic demands encountered in the real world of network design. Their generic approach, however, allows problem formulations and solutions to be applied across the board to virtually any type of backbone communication or computer network. For beginners, this book is an excellent introduction. For seasoned professionals, it provides immediate solutions and a strong foundation for further advances in the use of mathematical modeling for network design. (Less)

1,093 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
85% related
Server
79.5K papers, 1.4M citations
84% related
Wireless ad hoc network
49K papers, 1.1M citations
84% related
Wireless network
122.5K papers, 2.1M citations
84% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20201
20192
201818
2017224
2016447
2015599