scispace - formally typeset
Search or ask a question
Topic

Intelligent control

About: Intelligent control is a research topic. Over the lifetime, 16357 publications have been published within this topic receiving 217499 citations.


Papers
More filters
Proceedings ArticleDOI
04 Oct 1995
TL;DR: The optimization of nonlinear functions using particle swarm methodology is described and implementations of two paradigms are discussed and compared, including a recently developed locally oriented paradigm.
Abstract: The optimization of nonlinear functions using particle swarm methodology is described. Implementations of two paradigms are discussed and compared, including a recently developed locally oriented paradigm. Benchmark testing of both paradigms is described, and applications, including neural network training and robot task learning, are proposed. Relationships between particle swarm optimization and both artificial life and evolutionary computation are reviewed.

14,477 citations

Journal ArticleDOI
TL;DR: A new learning algorithm called ELM is proposed for feedforward neural networks (SLFNs) which randomly chooses hidden nodes and analytically determines the output weights of SLFNs which tends to provide good generalization performance at extremely fast learning speed.

10,217 citations

Journal ArticleDOI
TL;DR: Interestingly, neuro fuzzy and soft computing a computational approach to learning and machine intelligence that you really wait for now is coming.
Abstract: Interestingly, neuro fuzzy and soft computing a computational approach to learning and machine intelligence that you really wait for now is coming. It's significant to wait for the representative and beneficial books to read. Every book that is provided in better way and utterance will be expected by many peoples. Even you are a good reader or not, feeling to read this book will always appear when you find it. But, when you feel hard to find it as yours, what to do? Borrow to your friends and don't know when to give back it to her or him.

3,932 citations

Book
01 Jan 1995
TL;DR: Bayesian Learning for Neural Networks shows that Bayesian methods allow complex neural network models to be used without fear of the "overfitting" that can occur with traditional neural network learning methods.
Abstract: From the Publisher: Artificial "neural networks" are now widely used as flexible models for regression classification applications, but questions remain regarding what these models mean, and how they can safely be used when training data is limited. Bayesian Learning for Neural Networks shows that Bayesian methods allow complex neural network models to be used without fear of the "overfitting" that can occur with traditional neural network learning methods. Insight into the nature of these complex Bayesian models is provided by a theoretical investigation of the priors over functions that underlie them. Use of these models in practice is made possible using Markov chain Monte Carlo techniques. Both the theoretical and computational aspects of this work are of wider statistical interest, as they contribute to a better understanding of how Bayesian methods can be applied to complex problems. Presupposing only the basic knowledge of probability and statistics, this book should be of interest to many researchers in statistics, engineering, and artificial intelligence. Software for Unix systems that implements the methods described is freely available over the Internet.

3,846 citations

Proceedings ArticleDOI
25 Jul 2004
TL;DR: A new learning algorithm called extreme learning machine (ELM) for single-hidden layer feedforward neural networks (SLFNs) which randomly chooses the input weights and analytically determines the output weights of SLFNs is proposed.
Abstract: It is clear that the learning speed of feedforward neural networks is in general far slower than required and it has been a major bottleneck in their applications for past decades. Two key reasons behind may be: 1) the slow gradient-based learning algorithms are extensively used to train neural networks, and 2) all the parameters of the networks are tuned iteratively by using such learning algorithms. Unlike these traditional implementations, this paper proposes a new learning algorithm called extreme learning machine (ELM) for single-hidden layer feedforward neural networks (SLFNs) which randomly chooses the input weights and analytically determines the output weights of SLFNs. In theory, this algorithm tends to provide the best generalization performance at extremely fast learning speed. The experimental results based on real-world benchmarking function approximation and classification problems including large complex applications show that the new algorithm can produce best generalization performance in some cases and can learn much faster than traditional popular learning algorithms for feedforward neural networks.

3,643 citations


Network Information
Related Topics (5)
Control theory
299.6K papers, 3.1M citations
93% related
Fuzzy logic
151.2K papers, 2.3M citations
88% related
Artificial neural network
207K papers, 4.5M citations
86% related
Feature extraction
111.8K papers, 2.1M citations
84% related
Optimization problem
96.4K papers, 2.1M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202324
202294
2021246
2020469
2019660
2018801