scispace - formally typeset
Search or ask a question
Topic

Intelligent decision support system

About: Intelligent decision support system is a research topic. Over the lifetime, 16420 publications have been published within this topic receiving 332157 citations.


Papers
More filters
Book
15 Oct 1992
TL;DR: A complete guide to the C4.5 system as implemented in C for the UNIX environment, which starts from simple core learning methods and shows how they can be elaborated and extended to deal with typical problems such as missing data and over hitting.
Abstract: From the Publisher: Classifier systems play a major role in machine learning and knowledge-based systems, and Ross Quinlan's work on ID3 and C4.5 is widely acknowledged to have made some of the most significant contributions to their development. This book is a complete guide to the C4.5 system as implemented in C for the UNIX environment. It contains a comprehensive guide to the system's use , the source code (about 8,800 lines), and implementation notes. The source code and sample datasets are also available on a 3.5-inch floppy diskette for a Sun workstation. C4.5 starts with large sets of cases belonging to known classes. The cases, described by any mixture of nominal and numeric properties, are scrutinized for patterns that allow the classes to be reliably discriminated. These patterns are then expressed as models, in the form of decision trees or sets of if-then rules, that can be used to classify new cases, with emphasis on making the models understandable as well as accurate. The system has been applied successfully to tasks involving tens of thousands of cases described by hundreds of properties. The book starts from simple core learning methods and shows how they can be elaborated and extended to deal with typical problems such as missing data and over hitting. Advantages and disadvantages of the C4.5 approach are discussed and illustrated with several case studies. This book and software should be of interest to developers of classification-based intelligent systems and to students in machine learning and expert systems courses.

21,674 citations

Journal ArticleDOI
TL;DR: In this paper, an approach to synthesizing decision trees that has been used in a variety of systems, and it describes one such system, ID3, in detail, is described, and a reported shortcoming of the basic algorithm is discussed.
Abstract: The technology for building knowledge-based systems by inductive inference from examples has been demonstrated successfully in several practical applications. This paper summarizes an approach to synthesizing decision trees that has been used in a variety of systems, and it describes one such system, ID3, in detail. Results from recent studies show ways in which the methodology can be modified to deal with information that is noisy and/or incomplete. A reported shortcoming of the basic algorithm is discussed and two means of overcoming it are compared. The paper concludes with illustrations of current research directions.

17,177 citations

Book
01 Jan 1988
TL;DR: Probabilistic Reasoning in Intelligent Systems as mentioned in this paper is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty, and provides a coherent explication of probability as a language for reasoning with partial belief.
Abstract: From the Publisher: Probabilistic Reasoning in Intelligent Systems is a complete andaccessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty—and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition—in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.

15,671 citations

Journal ArticleDOI
TL;DR: This approach seems to be of fundamental importance to artificial intelligence (AI) and cognitive sciences, especially in the areas of machine learning, knowledge acquisition, decision analysis, knowledge discovery from databases, expert systems, decision support systems, inductive reasoning, and pattern recognition.
Abstract: Rough set theory, introduced by Zdzislaw Pawlak in the early 1980s [11, 12], is a new mathematical tool to deal with vagueness and uncertainty. This approach seems to be of fundamental importance to artificial intelligence (AI) and cognitive sciences, especially in the areas of machine learning, knowledge acquisition, decision analysis, knowledge discovery from databases, expert systems, decision support systems, inductive reasoning, and pattern recognition.

7,185 citations

Journal ArticleDOI
TL;DR: An overview of the foundational issues related to case-based reasoning is given, some of the leading methodological approaches within the field are described, and the current state of the field is exemplified through pointers to some systems.
Abstract: Case-based reasoning is a recent approach to problem solving and learning that has got a lot of attention over the last few years. Originating in the US, the basic idea and underlying theories have spread to other continents, and we are now within a period of highly active research in case-based reasoning in Europe, as well. This paper gives an overview of the foundational issues related to case-based reasoning, describes some of the leading methodological approaches within the field, and exemplifies the current state through pointers to some systems. Initially, a general framework is defined, to which the subsequent descriptions and discussions will refer. The framework is influenced by recent methodologies for knowledge level descriptions of intelligent systems. The methods for case retrieval, reuse, solution testing, and learning are summarized, and their actual realization is discussed in the light of a few example systems that represent different CBR approaches. We also discuss the role of case-based methods as one type of reasoning and learning method within an integrated system architecture.

5,750 citations


Network Information
Related Topics (5)
Fuzzy logic
151.2K papers, 2.3M citations
90% related
Artificial neural network
207K papers, 4.5M citations
87% related
Information system
107.5K papers, 1.8M citations
86% related
Feature extraction
111.8K papers, 2.1M citations
86% related
Optimization problem
96.4K papers, 2.1M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202364
2022154
2021526
2020629
2019535
2018486