scispace - formally typeset
Search or ask a question
Topic

Intensive care unit

About: Intensive care unit is a research topic. Over the lifetime, 40628 publications have been published within this topic receiving 1161230 citations. The topic is also known as: ICU & CCU.


Papers
More filters
Journal ArticleDOI
TL;DR: This study randomly assigned patients who arrived at an urban emergency department with severe sepsis or septic shock to receive either six hours of early goal-directed therapy or standard therapy (as a control) before admission to the intensive care unit.
Abstract: Background Goal-directed therapy has been used for severe sepsis and septic shock in the intensive care unit. This approach involves adjustments of cardiac preload, afterload, and contractility to balance oxygen delivery with oxygen demand. The purpose of this study was to evaluate the efficacy of early goal-directed therapy before admission to the intensive care unit. Methods We randomly assigned patients who arrived at an urban emergency department with severe sepsis or septic shock to receive either six hours of early goal-directed therapy or standard therapy (as a control) before admission to the intensive care unit. Clinicians who subsequently assumed the care of the patients were blinded to the treatment assignment. In-hospital mortality (the primary efficacy outcome), end points with respect to resuscitation, and Acute Physiology and Chronic Health Evaluation (APACHE II) scores were obtained serially for 72 hours and compared between the study groups. Results Of the 263 enrolled patients, 130 were ...

8,811 citations

Journal ArticleDOI
TL;DR: The clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia who were admitted to the intensive care unit (ICU) of Wuhan Jin Yin-tan hospital between late December, 2019 and Jan 26, 2020 are described.

7,787 citations

Journal ArticleDOI
TL;DR: A consensus committee of 68 international experts representing 30 international organizations was convened in 2008 to provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock".
Abstract: To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008. A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7–9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a Pao 2/Fio 2 ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a Pao 2/Fi o 2 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5–10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven “absolute”’ adrenal insufficiency (2C). Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients.

6,283 citations

Journal ArticleDOI
TL;DR: A restrictive strategy of red-cell transfusion is at least as effective as and possibly superior to a liberal transfusion strategy in critically ill patients, with the possible exception of patients with acute myocardial infarction and unstable angina.
Abstract: BACKGROUND To determine whether a restrictive strategy of red-cell transfusion and a liberal strategy produced equivalent results in critically ill patients, we compared the rates of death from all causes at 30 days and the severity of organ dysfunction. METHODS We enrolled 838 critically ill patients with euvolemia after initial treatment who had hemoglobin concentrations of less than 9.0 g per deciliter within 72 hours after admission to the intensive care unit and randomly assigned 418 patients to a restrictive strategy of transfusion, in which red cells were transfused if the hemoglobin concentration dropped below 7.0 g per deciliter and hemoglobin concentrations were maintained at 7.0 to 9.0 g per deciliter, and 420 patients to a liberal strategy, in which transfusions were given when the hemoglobin concentration fell below 10.0 g per deciliter and hemoglobin concentrations were maintained at 10.0 to 12.0 g per deciliter. RESULTS Overall, 30-day mortality was similar in the two groups (18.7 percent vs. 23.3 percent, P= 0.11). However, the rates were significantly lower with the restrictive transfusion strategy among patients who were less acutely ill -- those with an Acute Physiology and Chronic Health Evaluation II score of < or =20 (8.7 percent in the restrictive-strategy group and 16.1 percent in the liberal-strategy group; P=0.03) -- and among patients who were less than 55 years of age (5.7 percent and 13.0 percent, respectively; P=0.02), but not among patients with clinically significant cardiac disease (20.5 percent and 22.9 percent, respectively; P=0.69). The mortality rate during hospitalization was significantly lower in the restrictive-strategy group (22.3 percent vs. 28.1 percent, P=0.05). CONCLUSIONS A restrictive strategy of red-cell transfusion is at least as effective as and possibly superior to a liberal transfusion strategy in critically ill patients, with the possible exception of patients with acute myocardial infarction and unstable angina.

4,529 citations

Journal ArticleDOI
TL;DR: In this large, international, randomized trial, it was found that intensive glucose control increased mortality among adults in the ICU: a blood glucose target of 180 mg or less per deciliter resulted in lower mortality than did a target of 81 to 108 mg perDeciliter.
Abstract: Background: The optimal target range for blood glucose in critically ill patients remains unclear. Methods: Within 24 hours after admission to an intensive care unit (ICU), adults who were expected to require treatment in the ICU on 3 or more consecutive days were randomly assigned to undergo either intensive glucose control, with a target blood glucose range of 81 to 108 mg per deciliter (4.5 to 6.0 mmol per liter), or conventional glucose control, with a target of 180 mg or less per deciliter (10.0 mmol or less per liter). We defined the primary end point as death from any cause within 90 days after randomization. Results: Of the 6104 patients who underwent randomization, 3054 were assigned to undergo intensive control and 3050 to undergo conventional control; data with regard to the primary outcome at day 90 were available for 3010 and 3012 patients, respectively. The two groups had similar characteristics at baseline. A total of 829 patients (27.5%) in the intensive-control group and 751 (24.9%) in the conventional-control group died (odds ratio for intensive control, 1.14; 95% confidence interval, 1.02 to 1.28; P=0.02). The treatment effect did not differ significantly between operative (surgical) patients and nonoperative (medical) patients (odds ratio for death in the intensive-control group, 1.31 and 1.07, respectively; P=0.10). Severe hypoglycemia (blood glucose level, < or = 40 mg per deciliter [2.2 mmol per liter]) was reported in 206 of 3016 patients (6.8%) in the intensive-control group and 15 of 3014 (0.5%) in the conventional-control group (P<0.001). There was no significant difference between the two treatment groups in the median number of days in the ICU (P=0.84) or hospital (P=0.86) or the median number of days of mechanical ventilation (P=0.56) or renal-replacement therapy (P=0.39). Conclusions: In this large, international, randomized trial, we found that intensive glucose control increased mortality among adults in the ICU: a blood glucose target of 180 mg or less per deciliter resulted in lower mortality than did a target of 81 to 108 mg per deciliter. (ClinicalTrials.gov number, NCT00220987.)

4,241 citations


Network Information
Related Topics (5)
Intensive care
98.9K papers, 3.1M citations
97% related
Prospective cohort study
38.5K papers, 1.8M citations
83% related
Mortality rate
53.1K papers, 2.6M citations
83% related
Odds ratio
68.7K papers, 3M citations
82% related
Cohort study
58.9K papers, 2.8M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233,930
20229,189
20213,707
20203,313
20192,253
20182,145