scispace - formally typeset
Search or ask a question
Topic

Interaction network

About: Interaction network is a research topic. Over the lifetime, 2700 publications have been published within this topic receiving 113372 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This article proposes a scalable global network alignment algorithm based on clustering methods and graph matching techniques in order to detect conserved interactions while simultaneously attempting to maximize the sequence similarity of nodes involved in the alignment.
Abstract: Background Advances in high-throughput technology has led to an increased amount of available data on protein-protein interaction (PPI) data. Detecting and extracting functional modules that are common across multiple networks is an important step towards understanding the role of functional modules and how they have evolved across species. A global protein-protein interaction network alignment algorithm attempts to find such functional orthologs across multiple networks.

40 citations

Journal ArticleDOI
TL;DR: In this paper, an interventional consensus problem is formulated mathematically with signed graph theory and dynamical system theory and some neural network based adaptive estimators are proposed to estimate the nonlinear disturbances in the agent dynamics.

40 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigate the influence of the network topology on collective response in a leader-follower linear consensus model of distributed decision-making and study the collective capacity of the system to follow a dynamic driving signal (the leader) for a range of topologies and system sizes.
Abstract: Natural, social, and artificial multi-agent systems usually operate in dynamic environments, where the ability to respond to changing circumstances is a crucial feature. An effective collective response requires suitable information transfer among agents, and thus is critically dependent on the agents' interaction network. In order to investigate the influence of the network topology on collective response, we consider an archetypal model of distributed decision-making---the leader-follower linear consensus---and study the collective capacity of the system to follow a dynamic driving signal (the "leader") for a range of topologies and system sizes. The analysis reveals a nontrivial relationship between optimal topology and frequency of the driving signal. Interestingly, the response is optimal when each individual interacts with a certain number of agents which decreases monotonically with the frequency and, for large enough systems, is independent of the size of the system. This phenomenology is investigated in experiments of collective motion using a swarm of land robots. The emergent collective response to both a slow- and a fast-changing leader is measured and analyzed for a range of interaction topologies. These results have far-reaching practical implications for the design and understanding of distributed systems, since they highlight that a dynamic rewiring of the interaction network is paramount to the effective collective operations of multi-agent systems at different time-scales.

40 citations

Journal ArticleDOI
TL;DR: In this article, the collective behaviors of coupled systems of differential equations defined on an interaction network are investigated and it is shown that solutions on a strongly connected component of the network will synchronize.

39 citations

Journal ArticleDOI
TL;DR: The approach presented in this study can be applied to other complex traits for which risk-causative genes are known as it provides a promising tool for setting the foundations for collating genomics and wet laboratory data in a bidirectional manner and will be critical to accelerate molecular target prioritization and drug discovery.
Abstract: The genetic analysis of complex disorders has undoubtedly led to the identification of a wealth of associations between genes and specific traits. However, moving from genetics to biochemistry one gene at a time has, to date, rather proved inefficient and under-powered to comprehensively explain the molecular basis of phenotypes. Here we present a novel approach, weighted protein–protein interaction network analysis (W-PPI-NA), to highlight key functional players within relevant biological processes associated with a given trait. This is exemplified in the current study by applying W-PPI-NA to frontotemporal dementia (FTD): We first built the state of the art FTD protein network (FTD-PN) and then analyzed both its topological and functional features. The FTD-PN resulted from the sum of the individual interactomes built around FTD-spectrum genes, leading to a total of 4198 nodes. Twenty nine of 4198 nodes, called inter-interactome hubs (IIHs), represented those interactors able to bridge over 60% of the in...

39 citations


Network Information
Related Topics (5)
Genome
74.2K papers, 3.8M citations
83% related
Regulation of gene expression
85.4K papers, 5.8M citations
81% related
Cluster analysis
146.5K papers, 2.9M citations
80% related
Gene
211.7K papers, 10.3M citations
79% related
Transcription factor
82.8K papers, 5.4M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202337
202290
2021183
2020221
2019201
2018163