scispace - formally typeset
Search or ask a question
Topic

Interaction network

About: Interaction network is a research topic. Over the lifetime, 2700 publications have been published within this topic receiving 113372 citations.


Papers
More filters
Journal ArticleDOI
14 May 2010-PLOS ONE
TL;DR: This work presents and validates RefRec, the most comprehensive molecular interaction network reconstruction currently available for yeast, which integrates protein synthesis pathways, a metabolic network, and a protein-protein interaction network from major biological databases based on a reference object approach.
Abstract: Molecular interaction networks establish all cell biological processes. The networks are under intensive research that is facilitated by new high-throughput measurement techniques for the detection, quantification, and characterization of molecules and their physical interactions. For the common model organism yeast Saccharomyces cerevisiae, public databases store a significant part of the accumulated information and, on the way to better understanding of the cellular processes, there is a need to integrate this information into a consistent reconstruction of the molecular interaction network. This work presents and validates RefRec, the most comprehensive molecular interaction network reconstruction currently available for yeast. The reconstruction integrates protein synthesis pathways, a metabolic network, and a protein-protein interaction network from major biological databases. The core of the reconstruction is based on a reference object approach in which genes, transcripts, and proteins are identified using their primary sequences. This enables their unambiguous identification and non-redundant integration. The obtained total number of different molecular species and their connecting interactions is ∼67,000. In order to demonstrate the capacity of RefRec for functional predictions, it was used for simulating the gene knockout damage propagation in the molecular interaction network in ∼590,000 experimentally validated mutant strains. Based on the simulation results, a statistical classifier was subsequently able to correctly predict the viability of most of the strains. The results also showed that the usage of different types of molecular species in the reconstruction is important for accurate phenotype prediction. In general, the findings demonstrate the benefits of global reconstructions of molecular interaction networks. With all the molecular species and their physical interactions explicitly modeled, our reconstruction is able to serve as a valuable resource in additional analyses involving objects from multiple molecular -omes. For that purpose, RefRec is freely available in the Systems Biology Markup Language format.

30 citations

Journal ArticleDOI
16 Jan 2020-PLOS ONE
TL;DR: This work proposes a new framework, namely, Multi-Graph Regularized Nuclear Norm Minimization, which predicts the interactions between drugs and target proteins from three inputs: known drug-target interaction network, similarities over drugs and those over targets.
Abstract: The identification of potential interactions between drugs and target proteins is crucial in pharmaceutical sciences. The experimental validation of interactions in genomic drug discovery is laborious and expensive; hence, there is a need for efficient and accurate in-silico techniques which can predict potential drug-target interactions to narrow down the search space for experimental verification. In this work, we propose a new framework, namely, Multi-Graph Regularized Nuclear Norm Minimization, which predicts the interactions between drugs and target proteins from three inputs: known drug-target interaction network, similarities over drugs and those over targets. The proposed method focuses on finding a low-rank interaction matrix that is structured by the proximities of drugs and targets encoded by graphs. Previous works on Drug Target Interaction (DTI) prediction have shown that incorporating drug and target similarities helps in learning the data manifold better by preserving the local geometries of the original data. But, there is no clear consensus on which kind and what combination of similarities would best assist the prediction task. Hence, we propose to use various multiple drug-drug similarities and target-target similarities as multiple graph Laplacian (over drugs/targets) regularization terms to capture the proximities exhaustively. Extensive cross-validation experiments on four benchmark datasets using standard evaluation metrics (AUPR and AUC) show that the proposed algorithm improves the predictive performance and outperforms recent state-of-the-art computational methods by a large margin. Software is publicly available at https://github.com/aanchalMongia/MGRNNMforDTI.

30 citations

Journal ArticleDOI
TL;DR: NAP is a comprehensive web tool to automate network profiling and intra/inter-network topology comparison, designed to bridge the gap between network analysis, statistics, graph theory and partially visualization in a user-friendly way.
Abstract: Nowadays, due to the technological advances of high-throughput techniques, Systems Biology has seen a tremendous growth of data generation. With network analysis, looking at biological systems at a higher level in order to better understand a system, its topology and the relationships between its components is of a great importance. Gene expression, signal transduction, protein/chemical interactions, biomedical literature co-occurrences, are few of the examples captured in biological network representations where nodes represent certain bioentities and edges represent the connections between them. Today, many tools for network visualization and analysis are available. Nevertheless, most of them are standalone applications that often (i) burden users with computing and calculation time depending on the network’s size and (ii) focus on handling, editing and exploring a network interactively. While such functionality is of great importance, limited efforts have been made towards the comparison of the topological analysis of multiple networks. Network Analysis Provider (NAP) is a comprehensive web tool to automate network profiling and intra/inter-network topology comparison. It is designed to bridge the gap between network analysis, statistics, graph theory and partially visualization in a user-friendly way. It is freely available and aims to become a very appealing tool for the broader community. It hosts a great plethora of topological analysis methods such as node and edge rankings. Few of its powerful characteristics are: its ability to enable easy profile comparisons across multiple networks, find their intersection and provide users with simplified, high quality plots of any of the offered topological characteristics against any other within the same network. It is written in R and Shiny, it is based on the igraph library and it is able to handle medium-scale weighted/unweighted, directed/undirected and bipartite graphs. NAP is available at http://bioinformatics.med.uoc.gr/NAP .

30 citations

Journal ArticleDOI
TL;DR: It is shown that disrupted networks contained topological network modules (TNMs) with shared properties that mapped onto distinct locations in networks, which provide new insight into networks by capturing proteins from different categories.
Abstract: Biological networks consist of functional modules, however detecting and characterizing such modules in networks remains challenging. Perturbing networks is one strategy for identifying modules. Here we used an advanced mathematical approach named topological data analysis (TDA) to interrogate two perturbed networks. In one, we disrupted the S. cerevisiae INO80 protein interaction network by isolating complexes after protein complex components were deleted from the genome. In the second, we reanalyzed previously published data demonstrating the disruption of the human Sin3 network with a histone deacetylase inhibitor. Here we show that disrupted networks contained topological network modules (TNMs) with shared properties that mapped onto distinct locations in networks. We define TMNs as proteins that occupy close network positions depending on their coordinates in a topological space. TNMs provide new insight into networks by capturing proteins from different categories including proteins within a complex, proteins with shared biological functions, and proteins disrupted across networks.

30 citations

Journal ArticleDOI
TL;DR: The computational method underlying the recent work on discovering dysregulated pathways in glioma is described, which generalized previous approaches to compute information flows for a large number of instances and also provided a formal proof for the method.
Abstract: Large-scale molecular interaction networks are being increasingly used to provide a system level view of cellular processes Modeling communications between nodes in such huge networks as information flows is useful for dissecting dynamical dependences between individual network components In the information flow model, individual nodes are assumed to communicate with each other by propagating the signals through intermediate nodes in the network In this paper, we first provide an overview of the state of the art of research in the network analysis based on information flow models In the second part, we describe our computational method underlying our recent work on discovering dysregulated pathways in glioma Motivated by applications to inferring information flow from genotype to phenotype in a very large human interaction network, we generalized previous approaches to compute information flows for a large number of instances and also provided a formal proof for the method

29 citations


Network Information
Related Topics (5)
Genome
74.2K papers, 3.8M citations
83% related
Regulation of gene expression
85.4K papers, 5.8M citations
81% related
Cluster analysis
146.5K papers, 2.9M citations
80% related
Gene
211.7K papers, 10.3M citations
79% related
Transcription factor
82.8K papers, 5.4M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202337
202290
2021183
2020221
2019201
2018163