scispace - formally typeset
Search or ask a question
Topic

Interaction network

About: Interaction network is a research topic. Over the lifetime, 2700 publications have been published within this topic receiving 113372 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel approach called SAMNet, for Simultaneous Analysis of Multiple Networks, that is able to interpret diverse assays over multiple perturbations, and was able to identify canonical yeast metal-processing genes unique to each commodity in the yeast dataset, as well as human genes that are required for EMT signaling but escaped detection in the mRNA and phospho-proteomic data.
Abstract: The rapid development of high throughput biotechnologies has led to an onslaught of data describing genetic perturbations and changes in mRNA and protein levels in the cell. Because each assay provides a one-dimensional snapshot of active signaling pathways, it has become desirable to perform multiple assays (e.g. mRNA expression and phospho-proteomics) to measure a single condition. However, as experiments expand to accommodate various cellular conditions, proper analysis and interpretation of these data have become more challenging. Here we introduce a novel approach called SAMNet, for Simultaneous Analysis of Multiple Networks, that is able to interpret diverse assays over multiple perturbations. The algorithm uses a constrained optimization approach to integrate mRNA expression data with upstream genes, selecting edges in the protein–protein interaction network that best explain the changes across all perturbations. The result is a putative set of protein interactions that succinctly summarizes the results from all experiments, highlighting the network elements unique to each perturbation. We evaluated SAMNet in both yeast and human datasets. The yeast dataset measured the cellular response to seven different transition metals, and the human dataset measured cellular changes in four different lung cancer models of Epithelial-Mesenchymal Transition (EMT), a crucial process in tumor metastasis. SAMNet was able to identify canonical yeast metal-processing genes unique to each commodity in the yeast dataset, as well as human genes such as β-catenin and TCF7L2/TCF4 that are required for EMT signaling but escaped detection in the mRNA and phospho-proteomic data. Moreover, SAMNet also highlighted drugs likely to modulate EMT, identifying a series of less canonical genes known to be affected by the BCR-ABL inhibitor imatinib (Gleevec), suggesting a possible influence of this drug on EMT.

26 citations

Journal ArticleDOI
TL;DR: It is shown how the use of different interaction data sets, such as those resulting from high-throughput or small-scale studies, and different modelling methodologies for the derivation pair-wise protein interactions, can dramatically change the topology of these networks.
Abstract: Background Studies of the yeast protein interaction network have revealed distinct correlations between the connectivity of individual proteins within the network and the average connectivity of their neighbours. Although a number of biological mechanisms have been proposed to account for these findings, the significance and influence of the specific datasets included in these studies has not been appreciated adequately.

26 citations

Journal ArticleDOI
TL;DR: Dengue structural proteins interact with human protein targets involved in the maintenance of blood coagulation and innate anti-viral response processes, and it is predicted that the interaction of dengue proteins with a proposed human protein interaction network produces a modified biological outcome that may be behind the hallmark pathologies of d Dengue infection.
Abstract: Dengue virus infection is a public health threat to hundreds of millions of individuals in the tropical regions of the globe. Although Dengue infection usually manifests itself in its mildest, though often debilitating clinical form, dengue fever, life-threatening complications commonly arise in the form of hemorrhagic shock and encephalitis. The etiological basis for the virus-induced pathology in general, and the different clinical manifestations in particular, are not well understood. We reasoned that a detailed knowledge of the global biological processes affected by virus entry into a cell might help shed new light on this long-standing problem. A bacterial two-hybrid screen using DENV2 structural proteins as bait was performed, and the results were used to feed a manually curated, global dengue-human protein interaction network. Gene ontology and pathway enrichment, along with network topology and microarray meta-analysis, were used to generate hypothesis regarding dengue disease biology. Combining bioinformatic tools with two-hybrid technology, we screened human cDNA libraries to catalogue proteins physically interacting with the DENV2 virus structural proteins, Env, cap and PrM. We identified 31 interacting human proteins representing distinct biological processes that are closely related to the major clinical diagnostic feature of dengue infection: haemostatic imbalance. In addition, we found dengue-binding human proteins involved with additional key aspects, previously described as fundamental for virus entry into cells and the innate immune response to infection. Construction of a DENV2-human global protein interaction network revealed interesting biological properties suggested by simple network topology analysis. Our experimental strategy revealed that dengue structural proteins interact with human protein targets involved in the maintenance of blood coagulation and innate anti-viral response processes, and predicts that the interaction of dengue proteins with a proposed human protein interaction network produces a modified biological outcome that may be behind the hallmark pathologies of dengue infection.

26 citations

Journal ArticleDOI
TL;DR: It is shown that "hitting" frequent interfaces might be as destructive as eleminating high degree proteins (hub nodes), frequent interfaces are not always topologically critical elements in the network, and interface attack may reveal functional changes in the system better than the attack of single proteins.
Abstract: Networks are increasingly used to study the impact of drugs at the systems level. From the algorithmic standpoint, a drug can “attack” nodes or edges of a protein–protein interaction network. In this work, we propose a new network strategy, “The Interface Attack”, based on protein–protein interfaces. Similar interface architectures can occur between unrelated proteins. Consequently, in principle, a drug that binds to one has a certain probability of binding to others. The interface attack strategy simultaneously removes from the network all interactions that consist of similar interface motifs. This strategy is inspired by network pharmacology and allows inferring potential off-targets. We introduce a network model that we call “Protein Interface and Interaction Network (P2IN)”, which is the integration of protein–protein interface structures and protein interaction networks. This interface-based network organization clarifies which protein pairs have structurally similar interfaces and which proteins may...

26 citations

Journal ArticleDOI
30 May 2013-PLOS ONE
TL;DR: An integrative proteomics and interaction network-based classifier which combines the differential protein expression and topological features of human protein interaction network may be a powerful tool for the diagnosis of PCa.
Abstract: Aim Early diagnosis of prostate cancer (PCa), which is a clinically heterogeneous-multifocal disease, is essential to improve the prognosis of patients. However, published PCa diagnostic markers share little overlap and are poorly validated using independent data. Therefore, we here developed an integrative proteomics and interaction network-based classifier by combining the differential protein expression with topological features of human protein interaction networks to enhance the ability of PCa diagnosis.

26 citations


Network Information
Related Topics (5)
Genome
74.2K papers, 3.8M citations
83% related
Regulation of gene expression
85.4K papers, 5.8M citations
81% related
Cluster analysis
146.5K papers, 2.9M citations
80% related
Gene
211.7K papers, 10.3M citations
79% related
Transcription factor
82.8K papers, 5.4M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202337
202290
2021183
2020221
2019201
2018163