scispace - formally typeset
Search or ask a question
Topic

Interaction network

About: Interaction network is a research topic. Over the lifetime, 2700 publications have been published within this topic receiving 113372 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work provides the global evidence that interaction hubs obtain their robustness against uneven protein concentrations through co-expression of the constituents, and that the degree of co- expression correlates strongly with the complexity of the embedded motif.
Abstract: Almost all cellular functions are the results of well-coordinated interactions between various proteins. A more connected hub or motif in the interaction network is expected to be more important, and any perturbation in this motif would be more damaging to the smooth performance of the related functions. Thus, some coherent robustness of these hubs has to be derived. Here, we provide the global evidence that interaction hubs obtain their robustness against uneven protein concentrations through co-expression of the constituents, and that the degree of co-expression correlates strongly with the complexity of the embedded motif. We calculated the gene expression correlations between the proteins embedded in 3-, 4-, 5-, and 6-node interaction motifs of increasing complexities, and compared them to those between proteins from random motifs of similar complexities. We find that as the connectedness of these motifs increases, there is higher co-expression between the constituent proteins. For example, when the expression correlation is 0.7, the kernel density of the correlation increases from 0.152 for 4-node motifs with three edges to 0.403 for 4-node cliques. This implies that the robustness of the interaction system emerges from a proportionate synchronicity among the constituents of the motif via co-expression. We further show that such biological coherence via co-expression of component proteins can be reinforced by integrating conservation data in the analysis. For example, with addition of evolutionary information from other genomes, the ratio of kernel density for interaction and random data in the case of 5- and 6-node cliques in yeast increases from 37.8 to 123 and 98.4 to 1300, respectively, given that the expression correlation is 0.8. Our results show that genes whose products are involved in motifs have transcription and translation properties that minimize the noise in final protein concentrations, compared to random sets of genes.

18 citations

Journal ArticleDOI
01 May 2013-PLOS ONE
TL;DR: Zhang et al. as mentioned in this paper constructed ontology augmented networks with protein-protein interaction data and gene ontology, which effectively unified the topological structure of proteinprotein interaction networks and the similarity of gene ontologies into unified distance measures.
Abstract: Protein complexes are of great importance in understanding the principles of cellular organization and function. The increase in available protein-protein interaction data, gene ontology and other resources make it possible to develop computational methods for protein complex prediction. Most existing methods focus mainly on the topological structure of protein-protein interaction networks, and largely ignore the gene ontology annotation information. In this article, we constructed ontology augmented networks with protein-protein interaction data and gene ontology, which effectively unified the topological structure of protein-protein interaction networks and the similarity of gene ontology annotations into unified distance measures. After constructing ontology augmented networks, a novel method (clustering based on ontology augmented networks) was proposed to predict protein complexes, which was capable of taking into account the topological structure of the protein-protein interaction network, as well as the similarity of gene ontology annotations. Our method was applied to two different yeast protein-protein interaction datasets and predicted many well-known complexes. The experimental results showed that (i) ontology augmented networks and the unified distance measure can effectively combine the structure closeness and gene ontology annotation similarity; (ii) our method is valuable in predicting protein complexes and has higher F1 and accuracy compared to other competing methods.

18 citations

Journal ArticleDOI
TL;DR: A pipeline of computational tools that performs a series of analyses to explore a logical model's properties and how the solutions of a mathematical model can also be compared with experimental data, with a particular focus on high-throughput data in cancer biology.
Abstract: Mathematical models can serve as a tool to formalize biological knowledge from diverse sources, to investigate biological questions in a formal way, to test experimental hypotheses, to predict the effect of perturbations and to identify underlying mechanisms. We present a pipeline of computational tools that performs a series of analyses to explore a logical model's properties. A logical model of initiation of the metastatic process in cancer is used as a transversal example. We start by analysing the structure of the interaction network constructed from the literature or existing databases. Next, we show how to translate this network into a mathematical object, specifically a logical model, and how robustness analyses can be applied to it. We explore the visualization of the stable states, defined as specific attractors of the model, and match them to cellular fates or biological read-outs. With the different tools we present here, we explain how to assign to each solution of the model a probability and how to identify genetic interactions using mutant phenotype probabilities. Finally, we connect the model to relevant experimental data: we present how some data analyses can direct the construction of the network, and how the solutions of a mathematical model can also be compared with experimental data, with a particular focus on high-throughput data in cancer biology. A step-by-step tutorial is provided as a Supplementary Material and all models, tools and scripts are provided on an accompanying website: https://github.com/sysbio-curie/Logical_modelling_pipeline.

18 citations

Journal ArticleDOI
TL;DR: The proposed method is applied to human protein-protein interaction and hepatocellular carcinoma data and shows a significant enrichment of disease-related genes that are characterized by higher topological similarity than other genes.
Abstract: Predicting genes likely to be involved in human diseases is an important task in bioinformatics field. Nowadays, the accumulation of human protein-protein interactions (PPIs) data provides us an unprecedented opportunity to gain insight into human diseases. In this paper, we adopt the topological similarity in human protein-protein interaction network to predict disease-related genes. As a computational algorithm to speed up the identification of disease-related genes, the topological similarity has substantial advantages over previous topology-based algorithms. First of all, it provides a global measurement of similarity between two vertices. Secondly, quantity which can measure new topological feature has been integrated into the notion of topological similarity. Our method is specially designed for predicting disease-related genes of single disease-gene family. The proposed method is applied to human protein-protein interaction and hepatocellular carcinoma (HCC) data. The results show a significant enrichment of disease-related genes that are characterized by higher topological similarity than other genes.

18 citations

Journal ArticleDOI
31 Oct 2014-PLOS ONE
TL;DR: The proposed network-based similarity measure provides a way to suggest disease-pathway associations by using the weights assigned to the genes to perform enrichment analysis for each disease and lends support to the view that the similarity measure is a good indicator of relatedness of biological processes involved in causing the diseases.
Abstract: Identifying similar diseases could potentially provide deeper understanding of their underlying causes, and may even hint at possible treatments. For this purpose, it is necessary to have a similarity measure that reflects the underpinning molecular interactions and biological pathways. We have thus devised a network-based measure that can partially fulfill this goal. Our method assigns weights to all proteins (and consequently their encoding genes) by using information flow from a disease to the protein interaction network and back. Similarity between two diseases is then defined as the cosine of the angle between their corresponding weight vectors. The proposed method also provides a way to suggest disease-pathway associations by using the weights assigned to the genes to perform enrichment analysis for each disease. By calculating pairwise similarities between 2534 diseases, we show that our disease similarity measure is strongly correlated with the probability of finding the diseases in the same disease family and, more importantly, sharing biological pathways. We have also compared our results to those of MimMiner, a text-mining method that assigns pairwise similarity scores to diseases. We find the results of the two methods to be complementary. It is also shown that clustering diseases based on their similarities and performing enrichment analysis for the cluster centers significantly increases the term association rate, suggesting that the cluster centers are better representatives for biological pathways than the diseases themselves. This lends support to the view that our similarity measure is a good indicator of relatedness of biological processes involved in causing the diseases. Although not needed for understanding this paper, the raw results are available for download for further study at ftp://ftp.ncbi.nlm.nih.gov/pub/qmbpmn/DiseaseRelations/.

18 citations


Network Information
Related Topics (5)
Genome
74.2K papers, 3.8M citations
83% related
Regulation of gene expression
85.4K papers, 5.8M citations
81% related
Cluster analysis
146.5K papers, 2.9M citations
80% related
Gene
211.7K papers, 10.3M citations
79% related
Transcription factor
82.8K papers, 5.4M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202337
202290
2021183
2020221
2019201
2018163