scispace - formally typeset
Search or ask a question
Topic

Interaction network

About: Interaction network is a research topic. Over the lifetime, 2700 publications have been published within this topic receiving 113372 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This study shows how networks modified during evolution and contributes to explaining the occurrence of somatic genetic diseases, such as cancer, in terms of network perturbations.
Abstract: Duplications of genes encoding highly connected and essential proteins are selected against in several species but not in human, where duplicated genes encode highly connected proteins. To understand when and how gene duplicability changed in evolution, we compare gene and network properties in four species (Escherichia coli, yeast, fly, and human) that are representative of the increase in evolutionary complexity, defined as progressive growth in the number of genes, cells, and cell types. We find that the origin and conservation of a gene significantly correlates with the properties of the encoded protein in the protein-protein interaction network. All four species preserve a core of singleton and central hubs that originated early in evolution, are highly conserved, and accomplish basic biological functions. Another group of hubs appeared in metazoans and duplicated in vertebrates, mostly through vertebrate-specific whole genome duplication. Such recent and duplicated hubs are frequently targets of microRNAs and show tissue-selective expression, suggesting that these are alternative mechanisms to control their dosage. Our study shows how networks modified during evolution and contributes to explaining the occurrence of somatic genetic diseases, such as cancer, in terms of network perturbations.

50 citations

Journal ArticleDOI
TL;DR: It is found that the chromatin interaction profile of a gene-pair is a good predictor of their spatial co-expression, however, the accuracy of the prediction can be substantially improved when chromatin interactions are described using scale-aware topological measures of the multi-resolution Chromatin interaction network.
Abstract: The three dimensional conformation of the genome in the cell nucleus influences important biological processes such as gene expression regulation. Recent studies have shown a strong correlation between chromatin interactions and gene co-expression. However, predicting gene co-expression from frequent long-range chromatin interactions remains challenging. We address this by characterizing the topology of the cortical chromatin interaction network using scale-aware topological measures. We demonstrate that based on these characterizations it is possible to accurately predict spatial co-expression between genes in the mouse cortex. Consistent with previous findings, we find that the chromatin interaction profile of a gene-pair is a good predictor of their spatial co-expression. However, the accuracy of the prediction can be substantially improved when chromatin interactions are described using scale-aware topological measures of the multi-resolution chromatin interaction network. We conclude that, for co-expression prediction, it is necessary to take into account different levels of chromatin interactions ranging from direct interaction between genes (i.e. small-scale) to chromatin compartment interactions (i.e. large-scale).

50 citations

Book ChapterDOI
29 May 2012
TL;DR: Experiments on analyzing the disease phenotype-gene associations in Online Mendelian Inheritance in Man demonstrate that BiRW effectively improved disease gene prioritization over existing methods by ranking more known associations in the top 100 out of nearly 10,000 candidate genes.
Abstract: Random walk methods have been successfully applied to prioritizing disease causal genes. In this paper, we propose a bi-random walk algorithm (BiRW) based on a regularization framework for graph matching to globally prioritize disease genes for all phenotypes simultaneously. While previous methods perform random walk either on the protein-protein interaction network or the complete phenome-genome heterogenous network, BiRW performs random walk on the Kronecker product graph between the protein-protein interaction network and the phenotype similarity network. Three variations of BiRW that perform balanced or unbalanced bi-directional random walks are analyzed and compared with other random walk methods. Experiments on analyzing the disease phenotype-gene associations in Online Mendelian Inheritance in Man (OMIM) demonstrate that BiRW effectively improved disease gene prioritization over existing methods by ranking more known associations in the top 100 out of nearly 10,000 candidate genes.

50 citations

Journal ArticleDOI
01 Jan 2004
TL;DR: A general computational procedure for identifying the ligand peptides of PRMs by combining protein sequence information and observed physical interactions into a simple probabilistic model and from it derive an interaction-mediated de novo motif-finding framework.
Abstract: Motivation: Many protein--protein interactions are mediated by peptide recognition modules (PRMs), compact domains that bind to short peptides, and play a critical role in a wide array of biological processes. Recent experimental protein interaction data provide us with an opportunity to examine whether we may explain, or even predict their interactions by computational sequence analysis. Such a question was recently posed by the use of random peptide screens to characterize the ligands of one such PRM, the SH3 domain. Results: We describe a general computational procedure for identifying the ligand peptides of PRMs by combining protein sequence information and observed physical interactions into a simple probabilistic model and from it derive an interaction-mediated de novo motif-finding framework. Using a recent all-versus-all yeast two-hybrid SH3 domain interaction network, we demonstrate that our technique can be used to derive independent predictions of interactions mediated by SH3 domains. We show that only when sequence information is combined with such all versus all protein interaction datasets, are we capable of identifying motifs with sufficient sensitivity and specificity for predicting interactions. The algorithm is general so that it may be applied to other PRM domains (e.g. SH2, WW, PDZ). Availability: The Netmotsa software and source code, as part of a general Gibbs motif sampling library, are available at http://sf.net/projects/netmotsa

50 citations


Network Information
Related Topics (5)
Genome
74.2K papers, 3.8M citations
83% related
Regulation of gene expression
85.4K papers, 5.8M citations
81% related
Cluster analysis
146.5K papers, 2.9M citations
80% related
Gene
211.7K papers, 10.3M citations
79% related
Transcription factor
82.8K papers, 5.4M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202337
202290
2021183
2020221
2019201
2018163