scispace - formally typeset
Search or ask a question
Topic

Interference (wave propagation)

About: Interference (wave propagation) is a research topic. Over the lifetime, 26086 publications have been published within this topic receiving 321110 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Comparative results demonstrate how performance is affected by the introduction of intercell interference, and what is the penalty associated with the randomly spread coded DS-CDMA strategy.
Abstract: A simple multicell uplink communication model is suggested and analyzed for optimally coded randomly spread direct sequence code-division multiple access (DS-CDMA). The model adheres to Wyner's (1994) infinite linear cell-array model, according to which only adjacent-cell interference is present, and characterized by a single parameter 0/spl les//spl alpha//spl les/1. The discussion is confined to asymptotic analysis where both the number of users and the processing gain go to infinity, while their ratio goes to some finite constant. Single cell-site processing is assumed and four multiuser detection strategies are considered: the matched-filter detector, "optimum" detection with adjacent-cell interference treated as Gaussian noise, the linear minimum mean square error (MMSE) detector and a detector that performs MMSE-based successive interference cancellation for intracell users with linear MMSE processing of adjacent-cell interference. Spectral efficiency is evaluated under three power allocation policies: equal received powers (for all users), equal rates, and a maximal spectral efficiency policy. Comparative results demonstrate how performance is affected by the introduction of intercell interference, and what is the penalty associated with the randomly spread coded DS-CDMA strategy. Finally, the effect of intercell time-sharing protocols as suggested by Shamai and Wyner (1997) is also examined, and a significant system performance enhancement is observed.

59 citations

Journal ArticleDOI
TL;DR: In this paper, the existence of higher order interference terms in optical interferometry was shown to be inapplicable to quantum mechanics, to an extent that is more than four orders of magnitude smaller than the expected pairwise interference.
Abstract: Within the established theoretical framework of quantum mechanics, interference always occurs between pairs of paths through an interferometer. Higher order interferences with multiple constituents are excluded by Born's rule and can only exist in generalized probabilistic theories. Thus, high-precision experiments searching for such higher order interferences are a powerful method to distinguish between quantum mechanics and more general theories. Here, we perform such a test in an optical multi-path interferometer, which avoids crucial systematic errors, has access to the entire phase space and is more stable than previous experiments. Our results are in accordance with quantum mechanics and rule out the existence of higher order interference terms in optical interferometry to an extent that is more than four orders of magnitude smaller than the expected pairwise interference, refining previous bounds by two orders of magnitude.

59 citations

Patent
06 Jul 1967
TL;DR: In this paper, a reflective grating, a plurality of adjacent spaced conductive strips coupled to the surface of a piezoelectric layer for splitting an acoustic surface wave traveling across the surface into two components, one of which continues to travel in the original direction and the other of which travels skew to that direction.
Abstract: An acoustic delay line having an input and a plurality of output transducers is provided which includes at least one reflective grating, a plurality of adjacent spaced conductive strips, coupled to the surface of a piezoelectric layer for splitting an acoustic surface wave traveling across the surface of the piezoelectric layer into two components, one of which continues to travel in the original direction and the other of which travels skew to that direction. Each of the original and reflected portions are detected by the output transducers. Significantly, the reflective grating affords the basis for multiple output delay lines of various apparent applications, of structural simplicity and of minimal interference between input and output transducers.

59 citations

Journal ArticleDOI
TL;DR: This work presents a key generation protocol with known artificial interference, named SmokeGrenade, a new physical-layer approach for secret key generation in a narrowband fading channel that achieves a higher generation rate and entropy compared with some state-of-the-art approaches.
Abstract: Leveraging a wireless multipath channel as the source of common randomness, many key generation methods have been proposed according to the information-theory security. However, existing schemes suffer a low generation rate and a low entropy, and mainly rely on nodes' mobility. To overcome this limitation, we present a key generation protocol with known artificial interference, named SmokeGrenade, a new physical-layer approach for secret key generation in a narrowband fading channel. Our scheme utilizes artificial interference to contribute to the change of measured values on channel states. Our theoretical analysis shows that the key generation rate increases with the increment of the interference power. Particularly, the achievable key rate of SmokeGrenade gains three times better than that of the traditional key generation schemes when the average interference power is normalized to 1. Simulation results also demonstrate that SmokeGrenade achieves a higher generation rate and entropy compared with some state-of-the-art approaches.

59 citations

Journal ArticleDOI
TL;DR: It is shown that when the number of feedback bits scales with SNR as well as the value of scaling coefficient can be significantly reduced in networks with asymmetric interference topology, the sum degrees of freedom of the network are preserved.
Abstract: Interference alignment is degree of freedom optimal on $K$ -user MIMO interference channels and many previous works have studied the transceiver designs. However, these works predominantly focus on networks with perfect channel state information at the transmitters and symmetrical interference topology. In this paper, we consider a limited feedback system with heterogeneous path loss and spatial correlations and investigate how the dynamics of the interference topology can be exploited to improve the feedback efficiency. We propose a novel spatial codebook design and perform dynamic quantization via bit allocations to adapt to the asymmetry of the interference topology. We bound the system throughput under the proposed dynamic scheme in terms of the transmit SNR, feedback bits, and the interference topology parameters. It is shown that when the number of feedback bits scales with SNR as $C_{s}\cdot \log {\hbox{SNR}}+ {\cal O}(1)$ , the sum degrees of freedom of the network are preserved. Moreover, the value of scaling coefficient $C_{s}$ can be significantly reduced in networks with asymmetric interference topology.

59 citations


Network Information
Related Topics (5)
Communication channel
137.4K papers, 1.7M citations
91% related
Optical fiber
167K papers, 1.8M citations
85% related
Wireless
133.4K papers, 1.9M citations
84% related
Network packet
159.7K papers, 2.2M citations
84% related
Node (networking)
158.3K papers, 1.7M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202213
2021840
20201,221
20191,432
20181,351
20171,311