scispace - formally typeset
Search or ask a question
Topic

Interference (wave propagation)

About: Interference (wave propagation) is a research topic. Over the lifetime, 26086 publications have been published within this topic receiving 321110 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel multiple-input multiple-output (MIMO) design for molecular communication is proposed that utilizes multiple molecular emitters at the transmitter and multiple molecular detectors at the receiver to improve the data rate.
Abstract: In diffusion-based molecular communication, information transport is governed by diffusion through a fluid medium. The achievable data rates for these channels are very low compared to the radio-based communication system, since diffusion can be a slow process. To improve the data rate, a novel multiple-input multiple-output (MIMO) design for molecular communication is proposed that utilizes multiple molecular emitters at the transmitter and multiple molecular detectors at the receiver (in RF communication these all correspond to antennas). Using particle-based simulators, the channel’s impulse response is obtained and mathematically modeled. These models are then used to determine interlink interference (ILI) and intersymbol interference (ISI). It is assumed that when the receiver has incomplete information regarding the system and the channel state, low complexity symbol detection methods are preferred since the receiver is small and simple. Thus, four detection algorithms are proposed—adaptive thresholding, practical zero forcing with channel models excluding/including the ILI and ISI, and Genie-aided zero forcing. The proposed algorithms are evaluated extensively using numerical and analytical evaluations.

194 citations

Journal ArticleDOI
TL;DR: A simple and efficient optical interference method for fabricating high quality two- and three-dimensional (2D and 3D) periodic structures is demonstrated and the experimental results obtained with SU-8 photoresist are well in agreement with the theoretical predictions.
Abstract: A simple and efficient optical interference method for fabricating high quality two- and three-dimensional (2D and 3D) periodic structures is demonstrated. Employing multi-exposure of two-beam interference technique, different types of periodic structures are created depending on the number of exposure and the rotation angle of the sample for each exposure. Square and hexagonal 2D structures are fabricated by a multi-exposure of two-beam interference pattern with a rotation angle of 90 masculine and 60 masculine between two different exposures, respectively. Three-exposure, in particular, results in different kinds of 3D structures, with close lattice constants in transverse and longitudinal directions, which is difficult to be obtained by the commonly used multi-beam interference technique. The experimental results obtained with SU-8 photoresist are well in agreement with the theoretical predictions. Multi-exposure of two-beam interference technique should be very useful for fabrication of photonic crystals.

193 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the experimental realization of a majority gate based on the interference of spin waves in an Yttrium-Iron-Garnet-based waveguiding structure.
Abstract: Featuring low heat dissipation, devices based on spin-wave logic gates promise to comply with increasing future requirements in information processing. In this work, we present the experimental realization of a majority gate based on the interference of spin waves in an Yttrium-Iron-Garnet-based waveguiding structure. This logic device features a three-input combiner with the logic information encoded in a phase of 0 or π of the input spin waves. We show that the phase of the output signal represents the majority of the three phase states of the spin waves in the three inputs. A switching time of about 10 ns in the prototype device provides evidence for the ability of sub-nanosecond data processing in future down-scaled devices.

193 citations

Journal ArticleDOI
TL;DR: It is shown that depending on the properties of the users' holding times, the interference can be correlated and conditions under which the interference becomes m-dependent, /spl phi/-mixing, or long-range dependent.
Abstract: The paper considers interference in a wireless communication network caused by users that share the same propagation medium. Under the assumption that the interfering users are spatially Poisson distributed and under a power-law propagation loss function, it has been shown in the past that the interference instantaneous amplitude at the receiver is /spl alpha/-stable distributed. Past work has not considered the second-order statistics of the interference and has relied on the assumption that interference samples are independent. In this paper, we provide analytic expressions for the interference second-order statistics and show that depending on the properties of the users' holding times, the interference can be correlated. We provide conditions under which the interference becomes m-dependent, /spl phi/-mixing, or long-range dependent. Finally, we present some implications of our theoretical findings on signal detection.

192 citations

Posted Content
TL;DR: It is shown that as long as the feedback bit rate scales sufficiently fast with the signal-to-noise ratio, the transmitters can use an interference alignment strategy by treating the quantized channel estimates as being perfect to achieve the sum degrees of freedom of the interference channel attainable with perfect and global channel state information.
Abstract: While interference alignment schemes have been employed to realize the full multiplexing gain of $K$-user interference channels, the analyses performed so far have predominantly focused on the case when global channel knowledge is available at each node of the network. This paper considers the problem where each receiver knows its channels from all the transmitters and feeds back this information using a limited number of bits to all other terminals. In particular, channel quantization over the composite Grassmann manifold is proposed and analyzed. It is shown, for $K$-user multiple-input, multiple-output (MIMO) interference channels, that when the transmitters use an interference alignment strategy as if the quantized channel estimates obtained via this limited feedback are perfect, the full sum degrees of freedom of the interference channel can be achieved as long as the feedback bit rate scales sufficiently fast with the signal-to-noise ratio. Moreover, this is only one extreme point of a continuous tradeoff between achievable degrees of freedom region and user feedback rate scalings which are allowed to be non-identical. It is seen that a slower scaling of feedback rate for any one user leads to commensurately fewer degrees of freedom for that user alone.

189 citations


Network Information
Related Topics (5)
Communication channel
137.4K papers, 1.7M citations
91% related
Optical fiber
167K papers, 1.8M citations
85% related
Wireless
133.4K papers, 1.9M citations
84% related
Network packet
159.7K papers, 2.2M citations
84% related
Node (networking)
158.3K papers, 1.7M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202213
2021840
20201,221
20191,432
20181,351
20171,311