scispace - formally typeset

Topic

Interferometry

About: Interferometry is a(n) research topic. Over the lifetime, 58031 publication(s) have been published within this topic receiving 824872 citation(s).


Papers
More filters
Journal Article
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,742 citations

Journal ArticleDOI
TL;DR: The authors present a complete procedure for the identification and exploitation of stable natural reflectors or permanent scatterers (PSs) starting from long temporal series of interferometric SAR images.
Abstract: Temporal and geometrical decorrelation often prevents SAR interferometry from being an operational tool for surface deformation monitoring and topographic profile reconstruction. Moreover, atmospheric disturbances can strongly compromise the accuracy of the results. The authors present a complete procedure for the identification and exploitation of stable natural reflectors or permanent scatterers (PSs) starting from long temporal series of interferometric SAR images. When, as it often happens, the dimension of the PS is smaller than the resolution cell, the coherence is good even for interferograms with baselines larger than the decorrelation one, and all the available images of the ESA ERS data set can be successfully exploited. On these pixels, submeter DEM accuracy and millimetric terrain motion detection can be achieved, since atmospheric phase screen (APS) contributions can be estimated and removed. Examples are then shown of small motion measurements, DEM refinement, and APS estimation and removal in the case of a sliding area in Ancona, Italy. ERS data have been used.

3,443 citations

Journal ArticleDOI
Abstract: A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a noncontour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivity. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

3,417 citations

Journal ArticleDOI
01 Mar 2000
Abstract: Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristic of the surface. By exploiting the phase of the coherent radar signal, interferometry has transformed radar remote sensing from a largely interpretive science to a quantitative tool, with applications in cartography, geodesy, land cover characterization, and natural hazards. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

2,771 citations

Journal ArticleDOI
Abstract: The interferometers now being developed to detect gravitational waves work by measuring the relative positions of widely separated masses. Two fundamental sources of quantum-mechanical noise determine the sensitivity of such an interferometer: (i) fluctuations in number of output photons (photon-counting error) and (ii) fluctuations in radiation pressure on the masses (radiation-pressure error). Because of the low power of available continuous-wave lasers, the sensitivity of currently planned interferometers will be limited by photon-counting error. This paper presents an analysis of the two types of quantum-mechanical noise, and it proposes a new technique---the "squeezed-state" technique---that allows one to decrease the photon-counting error while increasing the radiation-pressure error, or vice versa. The key requirement of the squeezed-state technique is that the state of the light entering the interferometer's normally unused input port must be not the vacuum, as in a standard interferometer, but rather a "squeezed state"---a state whose uncertainties in the two quadrature phases are unequal. Squeezed states can be generated by a variety of nonlinear optical processes, including degenerate parametric amplification.

2,255 citations


Network Information
Related Topics (5)
Optical fiber

167K papers, 1.8M citations

88% related
Scattering

152.3K papers, 3M citations

86% related
Laser

353.1K papers, 4.3M citations

84% related
Radiative transfer

43.2K papers, 1.1M citations

84% related
Spectroscopy

71.3K papers, 1.5M citations

83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202226
20211,456
20201,818
20192,141
20182,122
20172,154