scispace - formally typeset
Search or ask a question

Showing papers on "Interferon published in 2004"


Journal ArticleDOI
TL;DR: Evidence is presented that heterologous RNA released from or associated with necrotic cells or generated by in vitro transcription also stimulates TLR3 and induces immune activation and this finding has potential physiologic relevance because RNA escaping from damaged tissue or contained within endocytosed cells could serve as an endogenous ligand forTLR3 that induces or otherwise modulates immune responses.

1,044 citations


Journal ArticleDOI
TL;DR: Findings suggest that cytokine dysfunction contributes to the pathogenesis of H5N1 disease and development of vaccines against influenza A (H5N 1) virus should be made a priority.

809 citations


Journal ArticleDOI
01 Jul 2004-Immunity
TL;DR: It is concluded that the TLR9/MyD88 pathway mediates antiviral cytokine responses by IPC, DC, and possibly other cell types, which are coordinated to promote effective NK cell function and MCMV clearance.

736 citations


Journal ArticleDOI
15 Feb 2004-Blood
TL;DR: Though TLR9/MyD88-deficiency abrogates IPC responses to HSV-1 in vitro, mice lacking either MyD88 orTLR9 are capable of controlling HSV -1 replication in vivo after local infection, demonstrating that TLR 9- and MyD 88-independent pathways in cells other than IPCs can effectively compensate for defective IPC responders.

697 citations


Journal ArticleDOI
TL;DR: During an immune response and inflammation, the activation of the stress system, and thus increased levels of systemic GCs through induction of a Th2 shift, may actually protect the organism from systemic “overshooting” with Th1/pro‐inflammatory cytokines and other products of activated macrophages with tissue‐damaging potential.
Abstract: Evidence accumulated over the last 5-10 years indicates that glucocorticoids (GCs) inhibit the production of interleukin (IL)-12, interferon (IFN)-gamma, IFN-alpha, and tumor necrosis factor (TNF)-alpha by antigen-presenting cells (APCs) and T helper (Th)1 cells, but upregulate the production of IL-4, IL-10, and IL-13 by Th2 cells. Through this mechanism increased levels of GCs may systemically cause a selective suppression of the Th1-cellular immunity axis, and a shift toward Th2-mediated humoral immunity, rather than generalized immunosuppression. During an immune response and inflammation, the activation of the stress system, and thus increased levels of systemic GCs through induction of a Th2 shift, may actually protect the organism from systemic "overshooting" with Th1/pro-inflammatory cytokines and other products of activated macrophages with tissue-damaging potential. However, conditions associated with significant changes of GCs levels, such as acute or chronic stress or cessation of chronic stress, severe exercise, and pregnancy and postpartum, through modulation of the Th1/Th2 balance may affect the susceptibility to or the course of infections as well as autoimmune and atopic/allergic diseases.

586 citations


Journal ArticleDOI
TL;DR: It is demonstrated that TBK1 as well as, albeit to a lesser extent, IKK-i play a crucial role in the induction of IFN-β and IFn-inducible genes in both TLR-stimulated and virus-infected EFs.
Abstract: Viral infection and stimulation with lipopolysaccharide (LPS) or double stranded RNA (dsRNA) induce phosphorylation of interferon (IFN) regulatory factor (IRF)-3 and its translocation to the nucleus, thereby leading to the IFN-beta gene induction. Recently, two IkappaB kinase (IKK)-related kinases, inducible IkappaB kinase (IKK-i) and TANK-binding kinase 1 (TBK1), were suggested to act as IRF-3 kinases and be involved in IFN-beta production in Toll-like receptor (TLR) signaling and viral infection. In this work, we investigated the physiological roles of these kinases by gene targeting. TBK1-deficient embryonic fibroblasts (EFs) showed dramatic decrease in induction of IFN-beta and IFN-inducible genes in response to LPS or dsRNA as well as after viral infection. However, dsRNA-induced expression of these genes was residually detected in TBK1-deficient cells and intact in IKK-i-deficient cells, but completely abolished in IKK-i/TBK1 doubly deficient cells. IRF-3 activation, in response not only to dsRNA but also to viral infection, was impaired in TBK1-deficient cells. Together, these results demonstrate that TBK1 as well as, albeit to a lesser extent, IKK-i play a crucial role in the induction of IFN-beta and IFN-inducible genes in both TLR-stimulated and virus-infected EFs.

559 citations


Journal ArticleDOI
TL;DR: Enhanced EAE in STAT1−/− mice was associated with continued generation of IFN-γ–producing Th1 cells and up-regulation of selective chemokines responsible for the increased recruitment of macrophages and neutrophils in the central nervous system.
Abstract: The transcription factors signal transducer and activator of transcription (STAT)1 and T-bet control the differentiation of interferon (IFN)-γ–producing T helper type (Th)1 cells. Here we compare the role of T-bet and STAT1 in the initiation and regulation of experimental autoimmune encephalomyelitis (EAE), a disease initiated by Th1 cells. T-bet–deficient mice immunized with myelin oligodendrocyte glycoprotein (MOG) were resistant to the development of EAE. This protection was also observed when T-bet−/− mice were crossed to the MOG-specific 2D2 T cell receptor transgenic strain. In contrast, although T-bet is downstream of STAT1, STAT1−/− mice were highly susceptible to EAE and developed more severe and accelerated disease with atypical neuropathologic features. The function of T-bet was dominant as mice deficient in both T-bet and STAT1 were also protected from EAE. CD4+ CD25+ regulatory T cells from these two mice strains were fully competent and do not explain the difference in disease susceptibility. However, enhanced EAE in STAT1−/− mice was associated with continued generation of IFN-γ–producing Th1 cells and up-regulation of selective chemokines responsible for the increased recruitment of macrophages and neutrophils in the central nervous system. Although the two transcription factors, STAT1 and T-bet, both induce IFN-γ gene transcription, our results demonstrate marked differences in their function in regulating pathogenic Th1 cell responses.

494 citations


Journal ArticleDOI
TL;DR: In this article, the role of type I IFNs in immunity to bacterial pathogens was examined by examining the infection of Listeria monocytogenes in BALB/c mice lacking the type I interferon (IFN)-β.
Abstract: Listeria monocytogenes is a facultative intracellular pathogen that induces a cytosolic signaling cascade resulting in expression of interferon (IFN)-β. Although type I IFNs are critical in viral defense, their role in immunity to bacterial pathogens is much less clear. In this study, we addressed the role of type I IFNs by examining the infection of L. monocytogenes in BALB/c mice lacking the type I IFN receptor (IFN-α/βR−/−). During the first 24 h of infection in vivo, IFN-α/βR−/− and wild-type mice were similar in terms of L. monocytogenes survival. In addition, the intracellular fate of L. monocytogenes in macrophages cultured from IFN-α/βR−/− and wild-type mice was indistinguishable. However, by 72 h after inoculation in vivo, IFN-α/βR−/− mice were ∼1,000-fold more resistant to a high dose L. monocytogenes infection. Resistance was correlated with elevated levels of interleukin 12p70 in the blood and increased numbers of CD11b+ macrophages producing tumor necrosis factor α in the spleen of IFN-α/βR−/− mice. The results of this study suggest that L. monocytogenes might be exploiting an innate antiviral response to promote its pathogenesis.

454 citations


Journal ArticleDOI
TL;DR: Using cloned macrophages, the laboratory has identified two critical upstream transducers of DON-induced MAPK activation, a widely-expressed serine/theonine protein kinase that can be activated by dsRNA, interferon, and other agents and hematopoetic cell kinase, a non-receptor associated Src family kinase.

448 citations


Journal ArticleDOI
TL;DR: These findings provide evidence that mammalian virus proteins can inhibit RNA silencing, implicating this mechanism as a nucleic acid-based antiviral immunity in mammalian cells.
Abstract: Homology-dependent RNA silencing occurs in many eukaryotic cells. We reported recently that nodaviral infection triggers an RNA silencing-based antiviral response (RSAR) in Drosophila, which is capable of a rapid virus clearance in the absence of expression of a virus-encoded suppressor. Here, we present further evidence to show that the Drosophila RSAR is mediated by the RNA interference (RNAi) pathway, as the viral suppressor of RSAR inhibits experimental RNAi initiated by exogenous double-stranded RNA and RSAR requires the RNAi machinery. We demonstrate that RNAi also functions as a natural antiviral immunity in mosquito cells. We further show that vaccinia virus and human influenza A, B, and C viruses each encode an essential protein that suppresses RSAR in Drosophila. The vaccinia and influenza viral suppressors, E3L and NS1, are distinct double-stranded RNA-binding proteins and essential for pathogenesis by inhibiting the mammalian IFN-regulated innate antiviral response. We found that the double-stranded RNA-binding domain of NS1, implicated in innate immunity suppression, is both essential and sufficient for RSAR suppression. These findings provide evidence that mammalian virus proteins can inhibit RNA silencing, implicating this mechanism as a nucleic acid-based antiviral immunity in mammalian cells.

434 citations


Journal ArticleDOI
TL;DR: An improved method for T7 siRNA synthesis is described that alleviates the interferon response while maintaining full efficacy of the siRNAs.
Abstract: Small interfering RNAs (siRNA) are potent reagents for directed post-transcriptional gene silencing and a major new genetic tool for investigating mammalian cells. When synthetic siRNAs are used for gene silencing, the costs can be substantial because of variations in siRNA efficacies. An alternative to chemically synthesized siRNAs are siRNAs produced by bacteriophage T7 RNA polymerase. We found that siRNAs synthesized from the T7 RNA polymerase system can trigger a potent induction of interferon alpha and beta in a variety of cell lines. Surprisingly, we also found very potent induction of interferon alpha and beta by short single-stranded RNAs (ssRNAs) transcribed with T3, T7 and Sp6 RNA polymerases. Analyses of the potential mediators of this response revealed that the initiating 5' triphosphate is required for interferon induction. We describe here an improved method for T7 siRNA synthesis that alleviates the interferon response while maintaining full efficacy of the siRNAs.

Journal ArticleDOI
TL;DR: It is shown that mice deficient in the type I interferon (IFN) receptor were more resistant to Listeria infection and had less apoptotic lesions than wild-type counterparts, and treatment of resting splenic lymphocytes with recombinant IFN-alphaA enhanced their susceptibility to LLO-induced apoptosis.
Abstract: Infection with Listeria monocytogenes causes lymphocyte apoptosis that is mediated by the actions of the pore-forming virulence factor listeriolysin O (LLO). Previous work showed that activated lymphocytes were highly sensitive to LLO-induced apoptosis, whereas resting lymphocytes were less susceptible. We now show that mice deficient in the type I interferon (IFN) receptor were more resistant to Listeria infection and had less apoptotic lesions than wild-type counterparts. Furthermore, treatment of resting splenic lymphocytes with recombinant IFN-αA enhanced their susceptibility to LLO-induced apoptosis. Together, these data suggest that type I IFN signaling is detrimental to handling of a bacterial pathogen and may enhance the susceptibility of lymphocytes undergoing apoptosis in response to bacterial pore-forming toxins.

Journal ArticleDOI
TL;DR: The effects of NS5A on interferon signalling, and the regulation of cell growth and apoptosis are highlighted, demonstrating that this protein is indeed of critical importance for HCV and is worthy of further investigation.
Abstract: The non-structural 5A (NS5A) protein of hepatitis C virus (HCV) has been the subject of intensive research over the last decade. It is generally accepted that NS5A is a pleiotropic protein with key roles in both viral RNA replication and modulation of the physiology of the host cell. Our understanding of the role of NS5A in the virus life cycle has been hampered by the lack of a robust in vitro system for the study of HCV replication, although the recent development of the subgenomic replicon has at least allowed us to begin to dissect the involvement of NS5A in the process of viral RNA replication. Early studies into the effects of NS5A on cell physiology relied on expression of NS5A either alone or in the context of other non-structural proteins; the advent of the replicon system has allowed the extrapolation of these studies to a more physiologically relevant cellular context. Despite recent progress, this field is controversial, and there is much work to be accomplished before we fully understand the many functions of this protein. In this article, the current state of our knowledge of NS5A, discussing in detail its direct involvement in virus replication, together with its role in modulating the cellular environment to favour virus replication and persistence, are reviewed. The effects of NS5A on interferon signalling, and the regulation of cell growth and apoptosis are highlighted, demonstrating that this protein is indeed of critical importance for HCV and is worthy of further investigation.

Journal ArticleDOI
TL;DR: HIV-1-induced maturation of both DC subsets may explain their disappearance from the blood of patients with high viral loads and may have important consequences on HIV-1 cellular transmission and HIV- 1-specific T-cell responses.
Abstract: In this study, we analyzed the phenotypic and physiological consequences of the interaction of plasmacytoid dendritic cells (pDCs) with human immunodeficiency virus type 1 (HIV-1). pDCs are one cellular target of HIV-1 and respond to the virus by producing alpha/beta interferon (IFN-alpha/beta) and chemokines. The outcome of this interaction, notably on the function of bystander myeloid DC (CD11c+ DCs), remains unclear. We therefore evaluated the effects of HIV-1 exposure on these two DC subsets under various conditions. Blood-purified pDCs and CD11c+ DCs were exposed in vitro to HIV-1, after which maturation markers, cytokine production, migratory capacity, and CD4 T-cell stimulatory capacity were analyzed. pDCs exposed to different strains of infectious or even chemically inactivated, nonreplicating HIV-1 strongly upregulated the expression of maturation markers, such as CD83 and functional CCR7, analogous to exposure to R-848, a synthetic agonist of toll-like receptor-7 and -8. In addition, HIV-1-activated pDCs produced cytokines (IFN-alpha and tumor necrosis factor alpha), migrated in response to CCL19 and, in coculture, matured CD11c+ DCs, which are not directly activated by HIV. pDCs also acquired the ability to stimulate naive CD4+ T cells, albeit less efficiently than CD11c+ DCs. This HIV-1-induced maturation of both DC subsets may explain their disappearance from the blood of patients with high viral loads and may have important consequences on HIV-1 cellular transmission and HIV-1-specific T-cell responses.

Journal ArticleDOI
TL;DR: The studies suggest that TBK1 plays an important role in the Toll-like receptor–mediated IFN response and is redundant with IKK-i in the response of certain cell types to viral infection.
Abstract: TANK-binding kinase-1 (TBK1) and the inducible IkappaB kinase (IKK-i) have been shown recently to activate interferon (IFN) regulatory factor-3 (IRF3), the primary transcription factor regulating induction of type I IFNs. Here, we have compared the role and specificity of TBK1 in the type I IFN response to lipopolysaccharide (LPS), polyI:C, and viral challenge by examining IRF3 nuclear translocation, signal transducer and activator of transcription 1 phosphorylation, and induction of IFN-regulated genes. The LPS and polyI:C-induced IFN responses were abolished and delayed, respectively, in macrophages from mice with a targeted disruption of the TBK1 gene. When challenged with Sendai virus, the IFN response was normal in TBK1(-/-) macrophages, but defective in TBK1(-/-) embryonic fibroblasts. Although both TBK1 and IKK-i are expressed in macrophages, only TBK1 but not IKK-i was detected in embryonic fibroblasts by Northern blotting analysis. Furthermore, the IFN response in TBK1(-/-) embryonic fibroblasts can be restored by reconstitution with wild-type IKK-i but not a mutant IKK-i lacking kinase activity. Thus, our studies suggest that TBK1 plays an important role in the Toll-like receptor-mediated IFN response and is redundant with IKK-i in the response of certain cell types to viral infection.

Journal ArticleDOI
18 Mar 2004-Nature
TL;DR: This work has found that the anthrax bacterium, Bacillus anthracis, selectively induces apoptosis of activated macrophages through its lethal toxin, which prevents activation of the anti-apoptotic p38 mitogen-activated protein kinase.
Abstract: Macrophages are pivotal constituents of the innate immune system, vital for recognition and elimination of microbial pathogens. Macrophages use Toll-like receptors (TLRs) to detect pathogen-associated molecular patterns--including bacterial cell wall components, such as lipopolysaccharide or lipoteichoic acid, and viral nucleic acids, such as double-stranded (ds)RNA--and in turn activate effector functions, including anti-apoptotic signalling pathways. Certain pathogens, however, such as Salmonella spp., Shigellae spp. and Yersiniae spp., use specialized virulence factors to overcome these protective responses and induce macrophage apoptosis. We found that the anthrax bacterium, Bacillus anthracis, selectively induces apoptosis of activated macrophages through its lethal toxin, which prevents activation of the anti-apoptotic p38 mitogen-activated protein kinase. We now demonstrate that macrophage apoptosis by three different bacterial pathogens depends on activation of TLR4. Dissection of anti- and pro-apoptotic signalling events triggered by TLR4 identified the dsRNA responsive protein kinase PKR as a critical mediator of pathogen-induced macrophage apoptosis. The pro-apoptotic actions of PKR are mediated both through inhibition of protein synthesis and activation of interferon response factor 3.

Journal ArticleDOI
TL;DR: The ability of MCs to produce cytokines including type I IFNs after exposure to viruses and to polyinosine-polycytidylic acid (polyI:C), a synthetic mimic of viral double-stranded RNA, is explored and suggests that MCs contribute to innate immune responses to viral infection via the production of type IIFNs.
Abstract: Background Although mast cells (MCs) have been clearly implicated in innate immune responses involving bacteria, their ability to respond to viral infection is less clear. Objective Given that MCs increase at sites of inflammation and are located at surfaces where exposure to invading viruses may occur, we explored the ability of MCs to produce cytokines including type I IFNs after exposure to viruses and to polyinosine-polycytidylic acid (polyI:C), a synthetic mimic of viral double-stranded RNA, and characterized the receptors involved, if any. Methods Human peripheral blood-derived cultured MCs and 2 MC lines, Laboratory of Allergic Disease MC line and human MC line 1, were stimulated with viruses and polyI:C, and cytokine production, degranulation, and signaling pathway activation were examined. Because polyI:C is a ligand for Toll-like receptor (TLR)–3, human MCs were also analyzed for TLR expression. Results Viruses and polyI:C induced IFN-α and IFN-β production. PolyI:C did not induce TNF, IL-1β, IL-5, or GM-CSF production, in contrast with other TLR ligands (LPS, peptidoglycan, CpG-A, or flagellin). IFN-α production involved nuclear factor–κB, p38, and C-Jun NH2-terminal kinase and mitogen-activated protein kinase. RT-PCR and Western blot analysis confirmed expression of TLR-3 by all MCs. Human cultured MCs also expressed TLR-1, TLR-2, TLR-4, TLR-5, TLR-6, TLR-7 and TLR-9. Antibodies to TLR-3 significantly decreased IFN-α production. Bone marrow–derived MCs from TLR-3 knockout mice showed an ablated response to polyI:C. Conclusions Murine and human MCs produce type I IFNs after exposure to double-stranded RNA and/or virus, the former via specific interactions with TLR-3. These data suggest that MCs contribute to innate immune responses to viral infection via the production of type I IFNs.

Journal ArticleDOI
TL;DR: DNA from probiotic bacteria can limit epithelial proinflammatory responses in vivo and in vitro and systemic and oral administration of VSL3 DNA ameliorates inflammatory responses.

Journal ArticleDOI
TL;DR: The present results suggest that NSs, unlike other viral IFN antagonists, does not inhibit IFN-specific transcription factors but blocks IFN gene expression at a subsequent step.
Abstract: Rift Valley fever virus (RVFV) is an important cause of epizootics and epidemics in Africa and a potential agent of bioterrorism. A better understanding of the factors that govern RVFV virulence and pathogenicity is required, given the urgent need for antiviral therapies and safe vaccines. We have previously shown that RVFV strains with mutations in the NSs gene are excellent inducers of α/β interferon (IFN-α/β) and are highly attenuated in mice. Here, we demonstrate that NSs is sufficient to block IFN-β gene expression at the transcriptional level. In cells transiently expressing NSs, IFN-β transcripts were not inducible by viral infection or by transfection of poly(I:C). NSs with anti-IFN activity accumulated in the nucleus. In contrast, mutant forms of NSs that had lost their IFN-inhibiting activity remained in the cytoplasm, indicating that nuclear localization plays a role. IFN synthesis is regulated by specific transcription factors, including interferon regulatory factor (IRF-3), NF-κB, and AP-1. In the presence of NSs, IRF-3 was still activated and moved to the nucleus. Likewise, NF-κB and AP-1 were activated normally, as shown in electrophoretic mobility shift assays. Moreover, NSs was found to inhibit transcriptional activity of a constitutive promoter, in agreement with recent findings showing that NSs targets the basal cellular transcription factor TFIIH. The present results suggest that NSs, unlike other viral IFN antagonists, does not inhibit IFN-specific transcription factors but blocks IFN gene expression at a subsequent step.

Journal ArticleDOI
TL;DR: It is shown that STAT3 activation is much stronger and more prolonged in STAT1-null mouse embryo fibroblasts than in wild-type cells, suggesting that their relative abundance may vary substantially in different normal cell types, under different conditions or in tumors is likely to have a major impact on how cells behave in response to different cytokines.

Journal ArticleDOI
TL;DR: It is demonstrated that alpha/beta interferon (IFN-α/β) and IFN-γ receptors have critical, nonoverlapping functions in resolving primary DEN infection in mice and the IFN system plays a more important role than T- and B-cell-dependent immunity in resistance to primary DEN infections in mice.
Abstract: Dengue virus (DEN) causes dengue fever and dengue hemorrhagic fever/dengue shock syndrome, which are major public health problems worldwide. The immune factors that control DEN infection or contribute to severe disease are neither well understood nor easy to examine in humans. In this study, we used wild-type and congenic mice lacking various components of the immune system to study the immune mechanisms in the response to DEN infection. Our results demonstrate that alpha/beta interferon (IFN-α/β) and IFN-γ receptors have critical, nonoverlapping functions in resolving primary DEN infection. Furthermore, we show that IFN-α/β receptor-mediated action limits initial DEN replication in extraneural sites and controls subsequent viral spread into the central nervous system (CNS). In contrast, IFN-γ receptor-mediated responses seem to act at later stages of DEN disease by restricting viral replication in the periphery and eliminating virus from the CNS. Mice deficient in B, CD4 + T, or CD8 + T cells had no increased susceptibility to DEN; however, RAG mice (deficient in both B and T cells) were partially susceptible to DEN infection. In summary, (i) IFN-α/β is critical for early immune responses to DEN infection, (ii) IFN-γ-mediated immune responses are crucial for both early and late clearance of DEN infection in mice, and (iii) the IFN system plays a more important role than T- and B-cell-dependent immunity in resistance to primary DEN infection in mice.

Journal ArticleDOI
TL;DR: It is shown that activation of this receptor by IFN-lambda 1 can also inhibit cell proliferation and induce STAT4 phosphorylation, further extending functional similarities with type I IFNs and shed some new light on the mechanisms of activation of STAT2 and STAT4 by these cytokines.

Journal ArticleDOI
TL;DR: It is shown for the first time that an invertebrate immune system, like its vertebrate counterparts, can recognize dsRNA as a virus-associated molecular pattern, resulting in the activation of an innate antiviral response.
Abstract: Vertebrates mount a strong innate immune response against viruses, largely by activating the interferon system. Double-stranded RNA (dsRNA), a common intermediate formed during the life cycle of many viruses, is a potent trigger of this response. In contrast, no general inducible antiviral defense mechanism has been reported in any invertebrate. Here we show that dsRNA induces antiviral protection in the marine crustacean Litopenaeus vannamei. When treated with dsRNA, shrimp showed increased resistance to infection by two unrelated viruses, white spot syndrome virus and Taura syndrome virus. Induction of this antiviral state is independent of the sequence of the dsRNA used and therefore distinct from the sequence-specific dsRNA-mediated genetic interference phenomenon. This demonstrates for the first time that an invertebrate immune system, like its vertebrate counterparts, can recognize dsRNA as a virus-associated molecular pattern, resulting in the activation of an innate antiviral response.

Journal ArticleDOI
TL;DR: It is demonstrated that HSV-1 modifies the IRF3 pathway in a manner different from that of the small RNA viruses most commonly studied, and that the RING finger domain of ICP0 is essential for this activity.
Abstract: Virus infection induces a rapid cellular response in cells characterized by the induction of interferon. While interferon itself does not induce an antiviral response, it activates a number of interferon-stimulated genes that collectively function to inhibit virus replication and spread. Previously, we and others reported that herpes simplex virus type 1 (HSV-1) induces an interferon -independent antiviral response in the absence of virus replication. Here, we report that the HSV-1 proteins ICP0 and vhs function in concert to disable the host antiviral response. In particular, we show that ICP0 blocks interferon regulatory factor IRF3- and IRF7-mediated activation of interferon-stimulated genes and that the RING finger domain of ICP0 is essential for this activity. Furthermore, we demonstrate that HSV-1 modifies the IRF3 pathway in a manner different from that of the small RNA viruses most commonly studied.

Journal ArticleDOI
TL;DR: High doses of interferon alpha-2a significantly improved the long-term clinical outcome and survival of patients with chronic hepatitis D, even though the majority had active cirrhosis before the onset of therapy.

Journal ArticleDOI
TL;DR: The data on interferon-based therapies among patients with lower chances for sustained virologic response is reviewed and the potential of the new pegylated interferons is discussed.
Abstract: The introduction of new agents and regimens for the treatment of chronic hepatitis C, such as pegylated interferons and combination therapy with ribavirin, has resulted in substantial improvements in sustained virologic response rates. However, treatment remains a challenge, particularly for certain patient populations, because several virus-related and patient-related factors are associated with a lower virologic response to therapy. Hepatitis C virus genotype 1 and a high baseline viral load are the major viral factors associated with lower response. Patient-related factors include previous relapse or nonresponse to treatment, the presence of cirrhosis, African-American ethnicity, older age, contraindications to treatment, and obesity. This article reviews the data on interferon-based therapies among patients with lower chances for sustained virologic response and discusses the potential of the new pegylated interferons.

Journal ArticleDOI
TL;DR: Comparison of gene expression patterns between immature and mature human neutrophils obtained evidence that intracellular proteases and other anti-bacterial proteins are produced at earlier stages of maturation, whereas the genes for receptors and signaling molecules required for the release of these effector molecules are preferentially induced during terminal differentiation.

Journal ArticleDOI
TL;DR: The data indicate that PIas1 is a physiologically important negative regulator of STAT1 and suggest that PIAS1 is critical for the IFN-γ- orIFN-β-mediated innate immune responses.
Abstract: Interferon (IFN) activates the signal transducer and activator of transcription (STAT) pathway to regulate immune responses. The protein inhibitor of activated STAT (PIAS) family has been suggested to negatively regulate STAT signaling. To understand the physiological function of PIAS1, we generated Pias1−/− mice. Using PIAS1-deficient cells, we show that PIAS1 selectively regulates a subset of IFN-γ- or IFN-β-inducible genes by interfering with the recruitment of STAT1 to the gene promoter. The antiviral activity of IFN-γ or IFN-β was consistently enhanced by Pias1 disruption. Pias1−/− mice showed increased protection against pathogenic infection. Our data indicate that PIAS1 is a physiologically important negative regulator of STAT1 and suggest that PIAS1 is critical for the IFN-γ- or IFN-β-mediated innate immune responses.

Journal ArticleDOI
TL;DR: High-mobility group box 1 appears to be a common mediator of inflammation induced by inflammatory cytokines and is likely to contribute to lesion progression and chronic inflammation.
Abstract: Objective— Atherosclerosis is a chronic inflammatory response of the arterial wall to injury. High-mobility group box 1 (HMGB1) is a DNA-binding protein, which on release from cells exhibits potent inflammatory actions. We examined its expression in atherosclerotic lesions and regulation by cytokines. Methods and Results— In atherosclerotic lesions, HMGB1 protein is expressed by endothelial cells, some intimal smooth muscle cells, and macrophages. As atherosclerosis develops and progresses from fatty streaks to fibrofatty lesion, the number of HMGB1-producing macrophages increases markedly. Studies using the THP-1 cell line indicated that HMGB1 mRNA expression could be markedly upregulated by inflammatory cytokines, interferon (IFN)-γ, tumor necrosis factor (TNF)-α and also transforming growth factor (TGF)-β. IFN-γ, TNF-α, TWEAK, and TGF-β induced an intracellular redistribution of HMGB1 and stimulated secretion by THP-1 cells and human blood monocytes. Inhibitors of MEK1/MEK2, protein kinase C, and PI-3/...

Journal ArticleDOI
TL;DR: The results suggest that the TRIF-induced IFN-stimulated response element and NF-κB activation and apoptosis pathways are uncoupled and provide a molecular explanation for the divergent effects induced by the adapter protein TRIF.