scispace - formally typeset
Search or ask a question

Showing papers on "Interferon published in 2017"


Journal ArticleDOI
TL;DR: Analysis of biopsy specimens from patients with melanoma confirmed interferon signature enrichment and upregulation of gene targets for STAT1/STAT2/STAT3 and IRF1 in anti-PD-1-responding tumors.

1,111 citations


Journal ArticleDOI
TL;DR: It is shown that the DNA exonuclease Trex1 is induced by radiation doses above 12–18 Gy in different cancer cells, and attenuates their immunogenicity by degrading DNA that accumulates in the cytosol upon radiation.
Abstract: Trex1 is an exonuclease that degrades cytosolic DNA and has been associated with modulation of interferon responses in autoimmunity and viral infections. Here, the authors show that Trex1 attenuates the immunogenicity of cancer cells treated with high radiation doses by d…

1,084 citations


01 Jan 2017
TL;DR: In this article, the authors reported that IP-10 is a potent inhibitor of angiogenesis in vivo and showed that it significantly inhibited basic fibroblast growth factor-induced neovascularization of Matrigel.
Abstract: Summary Human interferon-inducible protein 10 (IP-10), a member of the ot chemokine family, inhibits bone marrow colony formation, has antitumor activity in vivo, is chemoattractant for human monocytes and T cells, and promotes T cell adhesion to endothelial cells. Here we report that IP-10 is a potent inhibitor of angiogenesis in vivo. IP-10 profoundly inhibited basic fibroblast growth factor-induced neovascularization of Matrigel (prepared by H. K. Kleinman) injected subcutaneously into athymic mice. In addition, IP-10, in a dose-dependent fashion, suppressed endothelial cell differentiation into tubular capillary structures in vitro. IP-10 had no effect on endothelial cell growth, attachment, and migration as assayed in vitro. These results document an important biological property of IP-10 and raise the possibility that IP-10 may participate in the regulation of angiogenesis during inflammation and tumorigenesis.

644 citations


Journal ArticleDOI
04 Aug 2017-Science
TL;DR: It is shown that a microbially associated metabolite, desaminotyrosine (DAT), protects from influenza through augmentation of type I IFN signaling and diminution of lung immunopathy.
Abstract: The microbiota is known to modulate the host response to influenza infection through as-yet-unclear mechanisms. We hypothesized that components of the microbiota exert effects through type I interferon (IFN), a hypothesis supported by analysis of influenza in a gain-of-function genetic mouse model. Here we show that a microbially associated metabolite, desaminotyrosine (DAT), protects from influenza through augmentation of type I IFN signaling and diminution of lung immunopathology. A specific human-associated gut microbe, Clostridium orbiscindens, produced DAT and rescued antibiotic-treated influenza-infected mice. DAT protected the host by priming the amplification loop of type I IFN signaling. These findings show that specific components of the enteric microbiota have distal effects on responses to lethal infections through modulation of type I IFN.

334 citations


Journal ArticleDOI
07 Apr 2017-Science
TL;DR: A viral infection model that makes use of two reovirus strains that infect the intestine but differ in their immunopathological outcomes discovered that it can nonetheless disrupt intestinal immune homeostasis at inductive and effector sites of oral tolerance by suppressing peripheral regulatory T cell (pTreg) conversion and promoting TH1 immunity to dietary antigen.
Abstract: Viral infections have been proposed to elicit pathological processes leading to the initiation of T helper 1 (TH1) immunity against dietary gluten and celiac disease (CeD). To test this hypothesis and gain insights into mechanisms underlying virus-induced loss of tolerance to dietary antigens, we developed a viral infection model that makes use of two reovirus strains that infect the intestine but differ in their immunopathological outcomes. Reovirus is an avirulent pathogen that elicits protective immunity, but we discovered that it can nonetheless disrupt intestinal immune homeostasis at inductive and effector sites of oral tolerance by suppressing peripheral regulatory T cell (pTreg) conversion and promoting TH1 immunity to dietary antigen. Initiation of TH1 immunity to dietary antigen was dependent on interferon regulatory factor 1 and dissociated from suppression of pTreg conversion, which was mediated by type-1 interferon. Last, our study in humans supports a role for infection with reovirus, a seemingly innocuous virus, in triggering the development of CeD.

327 citations


Journal ArticleDOI
TL;DR: It is shown that ischemic cell death and uptake of cell debris by macrophages in the heart fuel a fatal response to MI by activating IRF3 and type I IFN production.
Abstract: Interferon regulatory factor 3 (IRF3) and type I interferons (IFNs) protect against infections and cancer, but excessive IRF3 activation and type I IFN production cause autoinflammatory conditions such as Aicardi-Goutieres syndrome and STING-associated vasculopathy of infancy (SAVI). Myocardial infarction (MI) elicits inflammation, but the dominant molecular drivers of MI-associated inflammation remain unclear. Here we show that ischemic cell death and uptake of cell debris by macrophages in the heart fuel a fatal response to MI by activating IRF3 and type I IFN production. In mice, single-cell RNA-seq analysis of 4,215 leukocytes isolated from infarcted and non-infarcted hearts showed that MI provokes activation of an IRF3-interferon axis in a distinct population of interferon-inducible cells (IFNICs) that were classified as cardiac macrophages. Mice genetically deficient in cyclic GMP-AMP synthase (cGAS), its adaptor STING, IRF3, or the type I IFN receptor IFNAR exhibited impaired interferon-stimulated gene (ISG) expression and, in the case of mice deficient in IRF3 or IFNAR, improved survival after MI as compared to controls. Interruption of IRF3-dependent signaling resulted in decreased cardiac expression of inflammatory cytokines and chemokines and decreased inflammatory cell infiltration of the heart, as well as in attenuated ventricular dilation and improved cardiac function. Similarly, treatment of mice with an IFNAR-neutralizing antibody after MI ablated the interferon response and improved left ventricular dysfunction and survival. These results identify IRF3 and the type I IFN response as a potential therapeutic target for post-MI cardioprotection.

313 citations


Journal ArticleDOI
02 Nov 2017-Cell
TL;DR: It is shown that tissue-resident type 1 innate lymphoid cells (ILC1) serve an essential early role in host immunity through rapid production of interferon (IFN)-γ following viral infection in response to local cDC1-derived proinflammatory cytokines.

307 citations


Journal ArticleDOI
TL;DR: It is proposed that, by modulating the immune response at its foundation, it may be possible to widely reshape immunity to control these chronic diseases.

289 citations


Journal ArticleDOI
TL;DR: It is demonstrated that coronavirus nsp15 is critical for evasion of host dsRNA sensors in macrophages and revealed that modulating nSP15 stability and activity is a strategy for generating live-attenuated vaccines.
Abstract: Coronaviruses are positive-sense RNA viruses that generate double-stranded RNA (dsRNA) intermediates during replication, yet evade detection by host innate immune sensors. Here we report that coronavirus nonstructural protein 15 (nsp15), an endoribonuclease, is required for evasion of dsRNA sensors. We evaluated two independent nsp15 mutant mouse coronaviruses, designated N15m1 and N15m3, and found that these viruses replicated poorly and induced rapid cell death in mouse bone marrow-derived macrophages. Infection of macrophages with N15m1, which expresses an unstable nsp15, or N15m3, which expresses a catalysis-deficient nsp15, activated MDA5, PKR, and the OAS/RNase L system, resulting in an early, robust induction of type I IFN, PKR-mediated apoptosis, and RNA degradation. Immunofluorescence imaging of nsp15 mutant virus-infected macrophages revealed significant dispersal of dsRNA early during infection, whereas in WT virus-infected cells, the majority of the dsRNA was associated with replication complexes. The loss of nsp15 activity also resulted in greatly attenuated disease in mice and stimulated a protective immune response. Taken together, our findings demonstrate that coronavirus nsp15 is critical for evasion of host dsRNA sensors in macrophages and reveal that modulating nsp15 stability and activity is a strategy for generating live-attenuated vaccines.

272 citations


Journal ArticleDOI
14 Dec 2017-Cell
TL;DR: It is shown that intrinsically expressed ISGs protect stem cells against viral infection, demonstrating the in vivo importance of intrinsic ISG expression for protecting stem cells and their differentiation potential during viral infection.

261 citations


Journal ArticleDOI
29 Jun 2017-Nature
TL;DR: An important innate immune signalling pathway that functions in intestinal epithelial cells and may present useful targets in the modulation of host defences against viral pathogens is highlighted.
Abstract: Rotavirus, a leading cause of severe gastroenteritis and diarrhoea in young children, accounts for around 215,000 deaths annually worldwide. Rotavirus specifically infects the intestinal epithelial cells in the host small intestine and has evolved strategies to antagonize interferon and NF-κB signalling, raising the question as to whether other host factors participate in antiviral responses in intestinal mucosa. The mechanism by which enteric viruses are sensed and restricted in vivo, especially by NOD-like receptor (NLR) inflammasomes, is largely unknown. Here we uncover and mechanistically characterize the NLR Nlrp9b that is specifically expressed in intestinal epithelial cells and restricts rotavirus infection. Our data show that, via RNA helicase Dhx9, Nlrp9b recognizes short double-stranded RNA stretches and forms inflammasome complexes with the adaptor proteins Asc and caspase-1 to promote the maturation of interleukin (Il)-18 and gasdermin D (Gsdmd)-induced pyroptosis. Conditional depletion of Nlrp9b or other inflammasome components in the intestine in vivo resulted in enhanced susceptibility of mice to rotavirus replication. Our study highlights an important innate immune signalling pathway that functions in intestinal epithelial cells and may present useful targets in the modulation of host defences against viral pathogens.

Journal ArticleDOI
TL;DR: The interaction between the C terminus of the N protein and the SPRY domain of TRIM25 inhibitedTRIM25-mediated RIG-I ubiquitination, which resulted in the inhibition of IFN production, indicating the function of the coronavirus N protein in modulating the host's initial innate immune response.
Abstract: Severe acute respiratory syndrome (SARS) is a respiratory disease, caused by a coronavirus (SARS-CoV), that is characterized by atypical pneumonia. The nucleocapsid protein (N protein) of SARS-CoV plays an important role in inhibition of type I interferon (IFN) production via an unknown mechanism. In this study, the SARS-CoV N protein was found to bind to the SPRY domain of the tripartite motif protein 25 (TRIM25) E3 ubiquitin ligase, thereby interfering with the association between TRIM25 and retinoic acid-inducible gene I (RIG-I) and inhibiting TRIM25-mediated RIG-I ubiquitination and activation. Type I IFN production induced by poly I·C or Sendai virus (SeV) was suppressed by the SARS-CoV N protein. SARS-CoV replication was increased by overexpression of the full-length N protein but not N amino acids 1 to 361, which could not interact with TRIM25. These findings provide an insightful interpretation of the SARS-CoV-mediated host innate immune suppression caused by the N protein.IMPORTANCE The SARS-CoV N protein is essential for the viral life cycle and plays a key role in the virus-host interaction. We demonstrated that the interaction between the C terminus of the N protein and the SPRY domain of TRIM25 inhibited TRIM25-mediated RIG-I ubiquitination, which resulted in the inhibition of IFN production. We also found that the Middle East respiratory syndrome CoV (MERS-CoV) N protein interacted with TRIM25 and inhibited RIG-I signaling. The outcomes of these findings indicate the function of the coronavirus N protein in modulating the host's initial innate immune response.

Journal ArticleDOI
TL;DR: Ezh2 serves as a molecular switch controlling melanoma escape during T cell-targeting immunotherapies and synergized with anti-CTLA-4 and IL-2 immunotherapy to suppress melanoma growth.

Journal ArticleDOI
TL;DR: Combined, the findings show that ZIKV subverts DC immunogenicity during infection, in part through evasion of type I IFN responses, but that the RLR signaling pathway is still capable of inducing an antiviral state, and therefore may serve as a antiviral therapeutic target.
Abstract: Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that is causally linked to severe neonatal birth defects, including microcephaly, and is associated with Guillain-Barre syndrome in adults. Dendritic cells (DCs) are an important cell type during infection by multiple mosquito-borne flaviviruses, including dengue virus, West Nile virus, Japanese encephalitis virus, and yellow fever virus. Despite this, the interplay between ZIKV and DCs remains poorly defined. Here, we found human DCs supported productive infection by a contemporary Puerto Rican isolate with considerable variability in viral replication, but not viral binding, between DCs from different donors. Historic isolates from Africa and Asia also infected DCs with distinct viral replication kinetics between strains. African lineage viruses displayed more rapid replication kinetics and infection magnitude as compared to Asian lineage viruses, and uniquely induced cell death. Infection of DCs with both contemporary and historic ZIKV isolates led to minimal up-regulation of T cell co-stimulatory and MHC molecules, along with limited secretion of inflammatory cytokines. Inhibition of type I interferon (IFN) protein translation was observed during ZIKV infection, despite strong induction at the RNA transcript level and up-regulation of other host antiviral proteins. Treatment of human DCs with RIG-I agonist potently restricted ZIKV replication, while type I IFN had only modest effects. Mechanistically, we found all strains of ZIKV antagonized type I IFN-mediated phosphorylation of STAT1 and STAT2. Combined, our findings show that ZIKV subverts DC immunogenicity during infection, in part through evasion of type I IFN responses, but that the RLR signaling pathway is still capable of inducing an antiviral state, and therefore may serve as an antiviral therapeutic target.

Journal ArticleDOI
24 Nov 2017-Science
TL;DR: A feedback mechanism of virus-induced lncRNA-mediated metabolic promotion of viral infection and a potential target for developing broad-acting antiviral therapeutics is revealed.
Abstract: Viruses regulate host metabolic networks to improve their survival. The molecules that are responsive to viral infection and regulate such metabolic changes are hardly known, but are essential for understanding viral infection. Here we identify a long noncoding RNA (lncRNA) that is induced by multiple viruses, but not by type I interferon (IFN-I), and facilitates viral replication in mouse and human cells. In vivo deficiency of lncRNA-ACOD1 (a lncRNA identified by its nearest coding gene Acod1, aconitate decarboxylase 1) significantly attenuates viral infection through IFN-I–IRF3 (interferon regulatory factor 3)–independent pathways. Cytoplasmic lncRNA-ACOD1 directly binds the metabolic enzyme glutamic-oxaloacetic transaminase (GOT2) near the substrate niche, enhancing its catalytic activity. Recombinant GOT2 protein and its metabolites could rescue viral replication upon lncRNA-ACOD1 deficiency and increase lethality. This work reveals a feedback mechanism of virus-induced lncRNA-mediated metabolic promotion of viral infection and a potential target for developing broad-acting antiviral therapeutics.

Journal ArticleDOI
27 Jul 2017-Cell
TL;DR: This study identifies STAT1 methylation on K525 catalyzed by the methyltransferase SETd2 as an essential signaling event for IFNα-dependent antiviral immunity and indicates potential of SETD2 in controlling viral infections.

Journal ArticleDOI
TL;DR: It is shown that epigenetic therapy in a mouse model of ovarian cancer increases the numbers of activated immune cells, and that this is dependent on the interferon antiviral response, which indicates that the type I IFN response is required for effective in vivo antitumorigenic actions of the DNMTi 5-azacytidine (AZA).
Abstract: Ovarian cancer is the most lethal of all gynecological cancers, and there is an urgent unmet need to develop new therapies. Epithelial ovarian cancer (EOC) is characterized by an immune suppressive microenvironment, and response of ovarian cancers to immune therapies has thus far been disappointing. We now find, in a mouse model of EOC, that clinically relevant doses of DNA methyltransferase and histone deacetylase inhibitors (DNMTi and HDACi, respectively) reduce the immune suppressive microenvironment through type I IFN signaling and improve response to immune checkpoint therapy. These data indicate that the type I IFN response is required for effective in vivo antitumorigenic actions of the DNMTi 5-azacytidine (AZA). Through type I IFN signaling, AZA increases the numbers of CD45+ immune cells and the percentage of active CD8+ T and natural killer (NK) cells in the tumor microenvironment, while reducing tumor burden and extending survival. AZA also increases viral defense gene expression in both tumor and immune cells, and reduces the percentage of macrophages and myeloid-derived suppressor cells in the tumor microenvironment. The addition of an HDACi to AZA enhances the modulation of the immune microenvironment, specifically increasing T and NK cell activation and reducing macrophages over AZA treatment alone, while further increasing the survival of the mice. Finally, a triple combination of DNMTi/HDACi plus the immune checkpoint inhibitor α-PD-1 provides the best antitumor effect and longest overall survival, and may be an attractive candidate for future clinical trials in ovarian cancer.

Journal ArticleDOI
TL;DR: PDL1 cell-intrinsic signaling protects cancer cells from interferon (IFN) cytotoxicity and accelerates tumor progression and reveals a mode of action of PDL1 in cancer cells as a first line of defense against IFN cytot toxicity.

Journal ArticleDOI
15 Aug 2017-Immunity
TL;DR: DCs are specialized in sensing mtDNA after CD47 blockade through inhibiting uptaken DNA degradation in their phagosomes while macrophages rapidly degrade DNA, and it is suggested that the CD47‐SIRP&agr; axis is critical for DC‐driven antitumor immunity.

Journal ArticleDOI
26 Apr 2017-Nature
TL;DR: Intravital microscopy revealed IFNγ-induced regression of the tumour vasculature, resulting in arrest of blood flow and subsequent collapse of tumours, similar to non-haemorrhagic necrosis in ischaemia and unlike haemor Rhotic necrosis induced by tumour necrosis factor.
Abstract: The relative contribution of the effector molecules produced by T cells to tumour rejection is unclear, but interferon-γ (IFNγ) is critical in most of the analysed models. Although IFNγ can impede tumour growth by acting directly on cancer cells, it must also act on the tumour stroma for effective rejection of large, established tumours. However, which stroma cells respond to IFNγ and by which mechanism IFNγ contributes to tumour rejection through stromal targeting have remained unknown. Here we use a model of IFNγ induction and an IFNγ-GFP fusion protein in large, vascularized tumours growing in mice that express the IFNγ receptor exclusively in defined cell types. Responsiveness to IFNγ by myeloid cells and other haematopoietic cells, including T cells or fibroblasts, was not sufficient for IFNγ-induced tumour regression, whereas responsiveness of endothelial cells to IFNγ was necessary and sufficient. Intravital microscopy revealed IFNγ-induced regression of the tumour vasculature, resulting in arrest of blood flow and subsequent collapse of tumours, similar to non-haemorrhagic necrosis in ischaemia and unlike haemorrhagic necrosis induced by tumour necrosis factor. The early events of IFNγ-induced tumour ischaemia resemble non-apoptotic blood vessel regression during development, wound healing or IFNγ-mediated, pregnancy-induced remodelling of uterine arteries. A better mechanistic understanding of how solid tumours are rejected may aid the design of more effective protocols for adoptive T-cell therapy.

Journal ArticleDOI
TL;DR: Downregulation of IFNAR1 in tumor stroma stimulated CRC development and growth, played a key role in formation of the immune-privileged niche, and predicted poor prognosis in human CRC patients, providing the rationale for upregulating IFnAR1 to improve anti-cancer therapies.

Journal ArticleDOI
TL;DR: HBV infection suppressed the expression of pattern-recognition receptors on NK cells, resulting in the dampening of the nuclear factor κB(NF-κB) and p38 mitogen-activated protein kinase pathways, which impaired NK-cell functions, as well as the responsiveness of the cells to poly (I:C) stimulation.
Abstract: Evidence suggests that exosomes can transfer genetic material between cells. However, their roles in hepatitis B virus (HBV) infection remain unclear. Here, we report that exosomes present in the sera of chronic hepatitis B (CHB) patients contained both HBV nucleic acids and HBV proteins, and transferred HBV to hepatocytes in an active manner. Notably, HBV nucleic acids were detected in natural killer (NK) cells from both CHB patients and healthy donors after exposure to HBV-positive exosomes. Through real-time fluorescence microscopy and flow cytometry, 1,1'-dioctadecyl-3,3,3',3',-tetramethylindodicarbocyanine, 4-chlorobenzenesulfnate salt (DiD)-labeled exosomes were observed to interact with NK cells and to be taken up by NK cells, which was enhanced by transforming growth factor-β treatment. Furthermore, HBV-positive exosomes impaired NK-cell functions, including interferon (IFN)-γ production, cytolytic activity, NK-cell proliferation and survival, as well as the responsiveness of the cells to poly (I:C) stimulation. HBV infection suppressed the expression of pattern-recognition receptors, especially retinoic acid inducible gene I (RIG-I), on NK cells, resulting in the dampening of the nuclear factor κB(NF-κB) and p38 mitogen-activated protein kinase pathways. Our results highlight a previously unappreciated role of exosomes in HBV transmission and NK-cell dysfunction during CHB infection.

Journal ArticleDOI
TL;DR: This study reveals a novel antagonistic system employing multiple ZIKV nonstructural proteins in restricting the innate antiviral responses and co-operation of NS1, NS4B and NS2B3 further enhances viral infection by blocking IFN-induced autophagic degradation of NS 2B3.
Abstract: Type I interferon (IFN) serves as the first line of defense against invading pathogens. Inhibition of IFN-triggered signaling cascade by Zika virus (ZIKV) plays a critical role for ZIKV to evade antiviral responses from host cells. Here we demonstrate that ZIKV nonstructural proteins NS1, NS4B and NS2B3 inhibit the induction of IFN and downstream IFN-stimulated genes through diverse strategies. NS1 and NS4B of ZIKV inhibit IFNβ signaling at TANK-binding kinase 1 level, whereas NS2B-NS3 of ZIKV impairs JAK-STAT signaling pathway by degrading Jak1 and reduces virus-induced apoptotic cell death. Furthermore, co-operation of NS1, NS4B and NS2B3 further enhances viral infection by blocking IFN-induced autophagic degradation of NS2B3. Hence, our study reveals a novel antagonistic system employing multiple ZIKV nonstructural proteins in restricting the innate antiviral responses.

Journal ArticleDOI
TL;DR: It is shown that a single hypomorphic mutation in CARD11 can cause potentially correctable cellular defects that lead to atopic dermatitis, and this data indicates that monogenic causes for severe manifestations of common allergic diseases have been identified.
Abstract: Few monogenic causes for severe manifestations of common allergic diseases have been identified. Through next-generation sequencing on a cohort of patients with severe atopic dermatitis with and without comorbid infections, we found eight individuals, from four families, with novel heterozygous mutations in CARD11, which encodes a scaffolding protein involved in lymphocyte receptor signaling. Disease improved over time in most patients. Transfection of mutant CARD11 expression constructs into T cell lines demonstrated both loss-of-function and dominant-interfering activity upon antigen receptor-induced activation of nuclear factor-κB and mammalian target of rapamycin complex 1 (mTORC1). Patient T cells had similar defects, as well as low production of the cytokine interferon-γ (IFN-γ). The mTORC1 and IFN-γ production defects were partially rescued by supplementation with glutamine, which requires CARD11 for import into T cells. Our findings indicate that a single hypomorphic mutation in CARD11 can cause potentially correctable cellular defects that lead to atopic dermatitis.

Journal ArticleDOI
TL;DR: Loss-of-function mutations in the DNASE2 gene are identified that cause type I interferon-mediated autoinflammation due to enhanced systemicinterferon signaling and are defined as a type I Interferonopathy due to DNase II deficiency in humans.
Abstract: Microbial nucleic acid recognition serves as the major stimulus to an antiviral response, implying a requirement to limit the misrepresentation of self nucleic acids as non-self and the induction of autoinflammation. By systematic screening using a panel of interferon-stimulated genes we identify two siblings and a singleton variably demonstrating severe neonatal anemia, membranoproliferative glomerulonephritis, liver fibrosis, deforming arthropathy and increased anti-DNA antibodies. In both families we identify biallelic mutations in DNASE2, associated with a loss of DNase II endonuclease activity. We record increased interferon alpha protein levels using digital ELISA, enhanced interferon signaling by RNA-Seq analysis and constitutive upregulation of phosphorylated STAT1 and STAT3 in patient lymphocytes and monocytes. A hematological disease transcriptomic signature and increased numbers of erythroblasts are recorded in patient peripheral blood, suggesting that interferon might have a particular effect on hematopoiesis. These data define a type I interferonopathy due to DNase II deficiency in humans. Nucleic acid sensing is important to ensure that an innate immune response is only mounted against microbial nucleic acid. Here, the authors identify loss-of-function mutations in the DNASE2 gene that cause type I interferon-mediated autoinflammation due to enhanced systemic interferon signaling.

Journal ArticleDOI
TL;DR: It is shown that DNA-damaging modalities used during cancer therapy lead to the release of ssDNA fragments from the cell nucleus into the cytosol, engaging this innate immune response and that the cytoplasmic 3'-5' exonuclease Trex1 is required for their degradation.
Abstract: Radiotherapy and chemotherapy are effective treatment methods for many types of cancer, but resistance is common. Recent findings indicate that antiviral type I interferon (IFN) signaling is induced by these treatments. However, the underlying mechanisms still need to be elucidated. Expression of a set of IFN-stimulated genes comprises an IFN-related DNA damage resistance signature (IRDS), which correlates strongly with resistance to radiotherapy and chemotherapy across different tumors. Classically, during viral infection, the presence of foreign DNA in the cytoplasm of host cells can initiate type I IFN signaling. Here, we demonstrate that DNA-damaging modalities used during cancer therapy lead to the release of ssDNA fragments from the cell nucleus into the cytosol, engaging this innate immune response. We found that the factors that control DNA end resection during double-strand break repair, including the Bloom syndrome (BLM) helicase and exonuclease 1 (EXO1), play a major role in generating these DNA fragments and that the cytoplasmic 3'-5' exonuclease Trex1 is required for their degradation. Analysis of mRNA expression profiles in breast tumors demonstrates that those with lower Trex1 and higher BLM and EXO1 expression levels are associated with poor prognosis. Targeting BLM and EXO1 could therefore represent a novel approach for circumventing the IRDS produced in response to cancer therapeutics.

Journal ArticleDOI
TL;DR: The results suggest that blocking IFNAR may provide a potential strategy to enhance immune recovery and reduce HIV-1 reservoirs in individuals with sustained elevations in IFN-I signaling during suppressive cART.
Abstract: Despite the efficient suppression of HIV-1 replication that can be achieved with combined antiretroviral therapy (cART), low levels of type I interferon (IFN-I) signaling persist in some individuals. This sustained signaling may impede immune recovery and foster viral persistence. Here we report studies using a monoclonal antibody to block IFN-α/β receptor (IFNAR) signaling in humanized mice (hu-mice) that were persistently infected with HIV-1. We discovered that effective cART restored the number of human immune cells in HIV-1-infected hu-mice but did not rescue their immune hyperactivation and dysfunction. IFNAR blockade fully reversed HIV-1-induced immune hyperactivation and rescued anti-HIV-1 immune responses in T cells from HIV-1-infected hu-mice. Finally, we found that IFNAR blockade in the presence of cART reduced the size of HIV-1 reservoirs in lymphoid tissues and delayed HIV-1 rebound after cART cessation in the HIV-1-infected hu-mice. We conclude that low levels of IFN-I signaling contribute to HIV-1-associated immune dysfunction and foster HIV-1 persistence in cART-treated hosts. Our results suggest that blocking IFNAR may provide a potential strategy to enhance immune recovery and reduce HIV-1 reservoirs in individuals with sustained elevations in IFN-I signaling during suppressive cART.

Journal ArticleDOI
TL;DR: It is demonstrated that in vivo blockade of IFN-I signaling during chronic HIV infection diminished HIV-driven immune activation, decreased T cell exhaustion marker expression, restored HIV-specific CD8 T cell function, and led to decreased viral replication.
Abstract: Chronic immune activation, immunosuppression, and T cell exhaustion are hallmarks of HIV infection, yet the mechanisms driving these processes are unclear. Chronic activation can be a driving force in immune exhaustion, and type I interferons (IFN-I) are emerging as critical components underlying ongoing activation in HIV infection. Here, we have tested the effect of blocking IFN-I signaling on T cell responses and virus replication in a murine model of chronic HIV infection. Using HIV-infected humanized mice, we demonstrated that in vivo blockade of IFN-I signaling during chronic HIV infection diminished HIV-driven immune activation, decreased T cell exhaustion marker expression, restored HIV-specific CD8 T cell function, and led to decreased viral replication. Antiretroviral therapy (ART) in combination with IFN-I blockade accelerated viral suppression, further decreased viral loads, and reduced the persistently infected HIV reservoir compared with ART treatment alone. Our data suggest that blocking IFN-I signaling in conjunction with ART treatment can restore immune function and may reduce viral reservoirs during chronic HIV infection, providing validation for IFN-I blockade as a potential therapy for HIV infection.

Journal ArticleDOI
TL;DR: This work identifies the TRIM23-TBK1-p62 axis as a key component of selective autophagy and further reveals a role for K27-linked ubiquitination in GTPase-dependent TBK1 activation.
Abstract: Autophagy and interferon (IFN)-mediated innate immunity are critical antiviral defence mechanisms, and recent evidence indicated that tripartite motif (TRIM) proteins are important regulators of both processes. Although the role of TRIM proteins in modulating antiviral cytokine responses has been well established, much less is known about their involvement in autophagy in response to different viral pathogens. Through a targeted RNAi screen examining the relevance of selected TRIM proteins in autophagy induced by herpes simplex virus 1 (HSV-1), encephalomyocarditis virus (EMCV) and influenza A virus (IAV), we identified several TRIM proteins that regulate autophagy in a virus-species-specific manner, as well as a few TRIM proteins that were essential for autophagy triggered by all three viruses and rapamycin, among them TRIM23. TRIM23 was critical for autophagy-mediated restriction of multiple viruses, and this activity was dependent on both its RING E3 ligase and ADP-ribosylation factor (ARF) GTPase activity. Mechanistic studies revealed that unconventional K27-linked auto-ubiquitination of the ARF domain is essential for the GTP hydrolysis activity of TRIM23 and activation of TANK-binding kinase 1 (TBK1) by facilitating its dimerization and ability to phosphorylate the selective autophagy receptor p62. Our work identifies the TRIM23-TBK1-p62 axis as a key component of selective autophagy and further reveals a role for K27-linked ubiquitination in GTPase-dependent TBK1 activation.

Journal ArticleDOI
TL;DR: It is reported that murine RNase H2 knockout cells accumulated cytosolic DNA aggregates virtually indistinguishable from micronuclei, and induction of autophagy by pharmacological mTOR inhibition resulted in a significant reduction of cytOSolic DNA and the accompanied interferon signature.
Abstract: Hypomorphic mutations in the DNA repair enzyme RNase H2 cause the neuroinflammatory autoimmune disorder Aicardi-Goutieres syndrome (AGS). Endogenous nucleic acids are believed to accumulate in patient cells and instigate pathogenic type I interferon expression. However, the underlying nucleic acid species amassing in the absence of RNase H2 has not been established yet. Here, we report that murine RNase H2 knockout cells accumulated cytosolic DNA aggregates virtually indistinguishable from micronuclei. RNase H2-dependent micronuclei were surrounded by nuclear lamina and most of them contained damaged DNA. Importantly, they induced expression of interferon-stimulated genes (ISGs) and co-localized with the nucleic acid sensor cGAS. Moreover, micronuclei associated with RNase H2 deficiency were cleared by autophagy. Consequently, induction of autophagy by pharmacological mTOR inhibition resulted in a significant reduction of cytosolic DNA and the accompanied interferon signature. Autophagy induction might therefore represent a viable therapeutic option for RNase H2-dependent disease. Endogenous retroelements have previously been proposed as a source of self-nucleic acids triggering inappropriate activation of the immune system in AGS. We used human RNase H2-knockout cells generated by CRISPR/Cas9 to investigate the impact of RNase H2 on retroelement propagation. Surprisingly, replication of LINE-1 and Alu elements was blunted in cells lacking RNase H2, establishing RNase H2 as essential host factor for the mobilisation of endogenous retrotransposons.