scispace - formally typeset
Search or ask a question
Topic

Interferon

About: Interferon is a research topic. Over the lifetime, 28969 publications have been published within this topic receiving 1219645 citations. The topic is also known as: IFN & interferons.


Papers
More filters
Journal ArticleDOI
TL;DR: The results demonstrate that type I interferon plays an important role in determining the pathogenicity and tissue restriction of influenza A/WSN/33 virus in vivo and in vitro.
Abstract: We have studied the pathogenesis of influenza virus infection in mice that are unable to respond to type I or II interferons due to a targeted disruption of the STAT1 gene. STAT1−/− animals are 100-fold more sensitive to lethal infection with influenza A/WSN/33 virus than are their wild-type (WT) counterparts. Virus replicated only in the lungs of WT animals following intranasal (i.n.) virus inoculation, while STAT1−/− mice developed a fulminant systemic influenza virus infection following either i.n. or intraperitoneal inoculation. We investigated the mechanism underlying this altered virus tropism by comparing levels of virus replication in fibroblast cell lines and murine embryonic fibroblasts derived from WT mice, STAT−/− mice, and mice lacking gamma interferon (IFNγ−/− mice) or the IFN-α receptor (IFNαR−/− mice). Influenza A/WSN/33 virus replicates to high titers in STAT1−/− or IFNαR−/− fibroblasts, while cells derived from WT or IFNγ−/− animals are resistant to influenza virus infection. Immunofluorescence studies using WT fibroblast cell lines demonstrated that only a small subpopulation of WT cells can be infected and that in the few infected WT cells, virus replication is aborted at an early, nuclear phase. In all organs examined except the lung, influenza A WSN/33 virus infection is apparently prevented by an intact type I interferon response. Our results demonstrate that type I interferon plays an important role in determining the pathogenicity and tissue restriction of influenza A/WSN/33 virus in vivo and in vitro.

298 citations

Journal ArticleDOI
TL;DR: Results demonstrate a new pathway for regulating cytokine responses, and suggest a mechanism for inhibition of IL-12-dependent immune responses during viral infections.
Abstract: Interferon (IFN)-α/β-mediated negative regulation of interleukin 12 (IL-12) and IFN-γ proteins is reported here. Both IFN-α and IFN-β inhibited fixed Staphylococcus aureus Cowan strain induction of IL-12 and IFN-γ production by mouse splenic leukocytes in culture. Extended studies with IFN-α demonstrated that inhibition was at the level of biologically active IL-12 p70. Effects were selective, as induction of tumor necrosis factor was unaffected and induction of IL-6 was enhanced. Neutralization of IFN-α/β expressed endogenously during infections with murine cytomegalovirus (MCMV) enhanced early IL-12 and IFN-γ protein production. Furthermore, during infections of mice with lymphocytic choriomeningitis virus (LCMV), this treatment revealed a previously undetected early IL-12 and IFN-γ protein expression, and mice deficient in IFN-α/β receptor function, but not control mice, also expressed endogenous LCMV-induced IL-12. The effects of IFN-α/β neutralization on production of IL-12 and IFN-γ during the viral infections were detected in both serum samples and medium conditioned with splenic leukocytes isolated from infected animals. In vitro studies demonstrated that splenic leukocytes isolated from LCMV-infected mice were primed to produce IL-12 in response to stimulation with Staphylococcus aureus Cowan strain, but that this responsiveness was sensitive to added IFN-α. Moreover, endogenous IFN-α/β induced by LCMV inhibited in vivo lipopolysaccharide stimulation of IL-12 production. These results demonstrate a new pathway for regulating cytokine responses, and suggest a mechanism for inhibition of IL-12-dependent immune responses during viral infections.

298 citations

Journal ArticleDOI
01 Dec 2016-Cell
TL;DR: It is demonstrated that, in three different murine syngeneic tumor models, loss of the Hippo pathway kinases LATS1/2 in tumor cells inhibits tumor growth, leading to tumor destruction by enhancing anti-tumor immune responses.

297 citations

Journal ArticleDOI
TL;DR: It is reported that inducible overexpression of functional PKR in murine fibroblasts sensitized cells to apoptosis induced by influenza virus, while in contrast, cells expressing a dominant-negative variant of PKR were completely resistant.
Abstract: Interferon (IFN) mediates its antiviral effects by inducing a number of responsive genes, including the double-stranded RNA (dsRNA)-dependent protein kinase, PKR. Here we report that inducible overexpression of functional PKR in murine fibroblasts sensitized cells to apoptosis induced by influenza virus, while in contrast, cells expressing a dominant-negative variant of PKR were completely resistant. We determined that the mechanism of influenza virus-induced apoptosis involved death signaling through FADD/caspase-8 activation, while other viruses such as vesicular stomatitis virus (VSV) and Sindbis virus (SNV) did not significantly provoke PKR-mediated apoptosis but did induce cytolysis of fibroblasts via activation of caspase-9. Significantly, treatment with IFN-alpha/beta greatly sensitized the fibroblasts to FADD-dependent apoptosis in response to dsRNA treatment or influenza virus infection but completely protected the cells against VSV and SNV replication in the absence of any cellular destruction. The mechanism by which IFN increases the cells' susceptibility to lysis by dsRNA or certain virus infection is by priming cells to FADD-dependent apoptosis, possibly by regulating the activity of the death-induced signaling complex (DISC). Conversely, IFN is also able to prevent the replication of viruses such as VSV that avoid triggering FADD-mediated DISC activity, by noncytopathic mechanisms, thus preventing destruction of the cell.

297 citations

Journal ArticleDOI
TL;DR: RV P is necessary and sufficient to prevent a critical IFN response in virus-infected cells by targeting activation of IRF-3 by an upstream kinase.
Abstract: Rabies virus (RV) of the Rhabdoviridae family grows in alpha/beta interferon (IFN)-competent cells, suggesting the existence of viral mechanisms preventing IFN gene expression. We here identify the viral phosphoprotein P as the responsible IFN antagonist. The critical involvement of P was first suggested by the observation that an RV expressing an enhanced green fluorescent protein (eGFP)-P fusion protein (SAD eGFP-P) (S. Finke, K. Brzozka, and K. K. Conzelmann, J. Virol. 78:12333-12343, 2004) was eliminated in IFN-competent HEp-2 cell cultures, in contrast to wild-type (wt) RV or an RV replicon lacking the genes for matrix protein and glycoprotein. SAD eGFP-P induced transcription of the IFN-beta gene and expression of the IFN-responsive MxA and STAT-1 genes. Similarly, an RV expressing low levels of P, which was generated by moving the P gene to a promoter-distal gene position (SAD DeltaPLP), lost the ability to prevent IFN induction. The analysis of RV mutants lacking expression of truncated P proteins P2, P3, or P4, which are expressed from internal AUG codons of the wt RV P open reading frame, further showed that full-length P is competent in suppressing IFN-beta gene expression. In contrast to wt RV, the IFN-inducing SAD DeltaPLP caused S386 phosphorylation, dimerization, and transcriptional activity of IFN regulatory factor 3 (IRF-3). Phosphorylation of IRF-3 by TANK-binding kinase-1 expressed from transfected plasmids was abolished in wt RV-infected cells or by cotransfection of P-encoding plasmids. Thus, RV P is necessary and sufficient to prevent a critical IFN response in virus-infected cells by targeting activation of IRF-3 by an upstream kinase.

296 citations


Network Information
Related Topics (5)
Virus
136.9K papers, 5.2M citations
91% related
Immune system
182.8K papers, 7.9M citations
90% related
Antibody
113.9K papers, 4.1M citations
90% related
Cytokine
79.2K papers, 4.4M citations
89% related
Antigen
170.2K papers, 6.9M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023812
20221,354
20211,152
20201,057
2019902
2018881