scispace - formally typeset
Search or ask a question
Topic

Interferon

About: Interferon is a research topic. Over the lifetime, 28969 publications have been published within this topic receiving 1219645 citations. The topic is also known as: IFN & interferons.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that murine bone marrow– derived macrophages (BMMΦ) secrete large amounts of IFN-γ upon appropriate stimulation, and a novel pathway of autocrine macrophage activation is uncovered by demonstrating that themacrophage is not only a key cell type responding to IFN -γ but also a potent IFN–producing cell.
Abstract: Interferon (IFN)-γ, a key immunoregulatory cytokine, has been thought to be produced solely by activated T cells and natural killer cells. In this study, we show that murine bone marrow– derived macrophages (BMMΦ) secrete large amounts of IFN-γ upon appropriate stimulation. Although interleukin (IL)-12 and IL-18 alone induce low levels of IFN-γ mRNA transcripts, the combined stimulation of BMMΦ with both cytokines leads to the efficient production of IFN-γ protein. The macrophage-derived IFN-γ is biologically active as shown by induction of inducible nitric oxide synthase as well as upregulation of CD40 in macrophages. Our findings uncover a novel pathway of autocrine macrophage activation by demonstrating that the macrophage is not only a key cell type responding to IFN-γ but also a potent IFN-γ–producing cell.

611 citations

Journal ArticleDOI
25 Jul 2002-Nature
TL;DR: It is demonstrated that dsRNA can effectively protect human cells against infection by a rapidly replicating and highly cytolytic RNA virus and elicit specific intracellular antiviral resistance that may provide a therapeutic strategy against human viruses.
Abstract: Gene silencing mediated by double-stranded RNA (dsRNA) is a sequence-specific, highly conserved mechanism in eukaryotes. In plants, it serves as an antiviral defence mechanism. Animal cells also possess this machinery but its specific function is unclear. Here we demonstrate that dsRNA can effectively protect human cells against infection by a rapidly replicating and highly cytolytic RNA virus. Pre-treatment of human and mouse cells with double-stranded, short interfering RNAs (siRNAs) to the poliovirus genome markedly reduces the titre of virus progeny and promotes clearance of the virus from most of the infected cells. The antiviral effect is sequence-specific and is not attributable to either classical antisense mechanisms or to interferon and the interferon response effectors protein kinase R (PKR) and RNaseL. Protection is the result of direct targeting of the viral genome by siRNA, as sequence analysis of escape virus (resistant to siRNAs) reveals one nucleotide substitution in the middle of the targeted sequence. Thus, siRNAs elicit specific intracellular antiviral resistance that may provide a therapeutic strategy against human viruses.

609 citations

Journal ArticleDOI
17 Jul 2003-Nature
TL;DR: The results suggest that multiple dendritic cell types, not just plasmacytoid cells, can act as specialized interferon-producing cells in certain viral infections, and reveal the existence of a TLR-independent pathway for d endritic cell activation that can be the target of viral interference.
Abstract: Type I interferons (IFN-I) are important cytokines linking innate and adaptive immunity. Plasmacytoid dendritic cells make high levels of IFN-I in response to viral infection and are thought to be the major source of the cytokines in vivo. Here, we show that conventional non-plasmacytoid dendritic cells taken from mice infected with a dendritic-cell-tropic strain of lymphocytic choriomeningitis virus make similarly high levels of IFN-I on subsequent culture. Similarly, non-plasmacytoid dendritic cells secrete high levels of IFN-I in response to double-stranded RNA (dsRNA), a major viral signature, when the latter is introduced into the cytoplasm to mimic direct viral infection. This response is partially dependent on the cytosolic dsRNA-binding enzyme protein kinase R and does not require signalling through toll-like receptor (TLR) 3, a surface receptor for dsRNA. Furthermore, we show that sequestration of dsRNA by viral NS1 (refs 6, 7) explains the inability of conventional dendritic cells to produce IFN-I on infection with influenza. Our results suggest that multiple dendritic cell types, not just plasmacytoid cells, can act as specialized interferon-producing cells in certain viral infections, and reveal the existence of a TLR-independent pathway for dendritic cell activation that can be the target of viral interference.

607 citations

Journal ArticleDOI
01 Jul 1991-Virology
TL;DR: The relative sensitivity of a virus to the inhibitory action of IFN is governed by the qualitative nature and quantitative amount of the individual IFN-regulated cell proteins that may collectively contribute to the inhibition of virus replication.

603 citations

Journal ArticleDOI
27 Nov 1992-Cell
TL;DR: It is shown that both NF-κB and the high mobility group protein I(Y) (HMG I( Y)) are required for virus induction of the human interferon-β (IFN-β) gene.

602 citations


Network Information
Related Topics (5)
Virus
136.9K papers, 5.2M citations
91% related
Immune system
182.8K papers, 7.9M citations
90% related
Antibody
113.9K papers, 4.1M citations
90% related
Cytokine
79.2K papers, 4.4M citations
89% related
Antigen
170.2K papers, 6.9M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023812
20221,354
20211,152
20201,057
2019902
2018881