scispace - formally typeset
Search or ask a question

Internal combustion engine

About: Internal combustion engine is a research topic. Over the lifetime, 130574 publications have been published within this topic receiving 1069616 citations. The topic is also known as: ICE.

More filters
01 Jan 1988
TL;DR: In this article, the authors describe real engine flow and combustion processes, as well as engine operating characteristics and their operation, including engine design and operating parameters, engine characteristics, and operating characteristics.
Abstract: 1 Engine Types and Their Operations 2 Engine Design and Operating Parameters 3 Thermochemistry of Fuel-Air Mixtures 4 Properties of Working Fluids 5 Ideal Models of Engine Cycles 6 Gas Exchange Processes 7 SI Engine Fuel Metering and Manifold Phenomena 8 Charge Motion within the Cylinder 9 Combustion in Ignition Engines 10 Combustion in Compression Ignition Engines 11 Pollutant Formation and Control 12 Engine Heat Transfer 13 Engine Friction and Lubrication 14 Modeling Real Engine Flow and Combustion Processes 15 Engine Operating Characteristics Appendixes

14,372 citations

12 Mar 2014
TL;DR: In this paper, a cost-effective model-based control-system design for internal combustion engines (ICE) is presented, where the primary emphasis is put on the ICE and its auxiliary devices.
Abstract: Internal combustion engines (ICE) still have potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. In order to fully exploit the remaining margins, increasingly sophisticated control systems have to be applied. This book offers an introduction to cost-effective model-based control-system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed and solutions for selected feedforward and feedback control-problems are presented. The discussions concerning pollutant emissions and fuel economy of ICE in automotive applications constantly intensified since the first edition of this book was published. Concerns about the air quality, the limited resources of fossil fuels and the detrimental effects of greenhouse gases exceedingly spurred the interest of both the industry and academia in further improvements. The most important changes and additions included in this second edition are: - restructured and slightly extended section on superchargers; - short subsection on rotational oscillations and their treatment on engine test-benches; - complete section on modeling, detection, and control of engine knock; - improved physical and chemical model for the three-way catalytic converter; - new methodology for the design of an air-to-fuel ratio controller; - short introduction to thermodynamic engine-cycle calculation and corresponding control-oriented aspects. (orig.)

1,228 citations

01 Jun 1985
TL;DR: In this article, a zero-dimensional model of a turbocharged medium speed diesel engine is used to evaluate scavenge and results for port flow co-efficients for a two-stroke diesel engine.
Abstract: Fundamental operating principles early internal combustion engine development, characteristics of internal combusion engines, additional types of internal combustion engine, prospects for internal combustion engines, thermodynamic principles introduction and definitions of efficience, ideal air standard cycles, comparison between thermodynamic and mechanical cycles, additional performance parameters for internal combustion engines, fuel-air cycle, computer models, combustion and fuels combustion chemistry and fuel chemistry, combustion thermodynamics, dissociation, combustion in spark ignition engines, combustion in compression ignition engines, fuels and additives, engine emissions, combustion modelling, spark ignition engines combustion chambers, catalysts and emissions from spark ignition engines, mixture preparation, electronic control engines, compression ignition engines direct injection (DI) systems, indirect injection (IDI) systems, cold starting of compression ignition engines, fuel injection equipment, diesel engine emissions, induction and exhaust processes valve gear, flow characteristics of poppet valves, valve timing, unsteady compressible fluid flow, manifold, silencing, two stroke engines two stroke gas flow performance parameters, scavenging systems, scavenge modelling, experimental techniques for evaluating scavenge and results for port flow co-efficients, engine performance and technology, in-cylinder motion flow measurement techniques, turbulence, turbocharging radial flow and axial flow machines, turbocharging the compression ignition engine, turbocharging the spark ignition engine, engine modelling zero-dimensional modelling, application of modelling to a turbocharged medium speed diesel engine, mechanical design considerations the disposition and number of the cylinders, cylinder block and head materials, the piston and rings, the connecting-rod, crankshaft, camshaft and valves, lubrication and bearings, advanced design concepts, heat transfer in internal combustion engines engine cooling, liquid coolant systems, experimental facilities quasi-steady engine instrumentation, experimental accuracy, measurement of exhaust emissions, computer based combustion analysis, advanced test systems, case studies Jaguar V12 HE engine, Chrysler 2.2 litre spark ignition engine, Ford 2.5 litre DI diesel engine. Appendices: the use of SI units answers to numerical problems engine specifications stratified charge engines engine tuning.

1,106 citations

Proceedings ArticleDOI
01 Feb 1979
TL;DR: Active Thermo-Atmosphere Combustion (ATAC) as discussed by the authors is a new lean combustion process for internal combustion engines that differs from conventional gasoline and diesel engine combustion processes.
Abstract: A new lean combustion process for internal combustion engines has been developed. This newly devised combustion system, designated as "Active Thermo-Atmosphere Combustion" (ATAC), differs from conventional gasoline and diesel engine combustion processes. ATAC can be applied most easily to two-stroke cycle gasoline engines. Stable combustion can be achieved with lean mixtures at part-throttle operation. With ATAC the fuel consumption and exhaust emissions of two-stroke cycle spark-ignition engines are remarkably improved, and noise and vibration are reduced.

956 citations

Network Information
Related Topics (5)
Diesel fuel
55.4K papers, 953.3K citations
90% related
172.3K papers, 1.9M citations
88% related
106.6K papers, 1M citations
79% related
158.6K papers, 893K citations
79% related
Heat exchanger
184.2K papers, 1M citations
79% related
No. of papers in the topic in previous years