scispace - formally typeset
Search or ask a question
Topic

Internet security

About: Internet security is a research topic. Over the lifetime, 5375 publications have been published within this topic receiving 112993 citations. The topic is also known as: operation security.


Papers
More filters
Journal ArticleDOI
TL;DR: This survey will explore the most relevant limitations of IoT devices and their solutions, and present the classification of IoT attacks, and analyze the security issues in different layers.
Abstract: Internet-of-Things (IoT) are everywhere in our daily life. They are used in our homes, in hospitals, deployed outside to control and report the changes in environment, prevent fires, and many more beneficial functionality. However, all those benefits can come of huge risks of privacy loss and security issues. To secure the IoT devices, many research works have been conducted to countermeasure those problems and find a better way to eliminate those risks, or at least minimize their effects on the user’s privacy and security requirements. The survey consists of four segments. The first segment will explore the most relevant limitations of IoT devices and their solutions. The second one will present the classification of IoT attacks. The next segment will focus on the mechanisms and architectures for authentication and access control. The last segment will analyze the security issues in different layers.

804 citations

Book
01 Jul 2007
TL;DR: This book is intended as a one-semester undergraduate course on network security for computer science, computer engineering, and electrical engineering majors, and serves as a basic reference volume and is suitable for self-study.
Abstract: From the Book: PREFACE: Preface In this age of electronic connectivity, of viruses and hackers, of electronic eavesdropping and electronic fraud, network security has assumed increasing importance. Two trends have come together to make the topic of this book of vital interest. First, the explosive growth in computer systems and their interconnections via networks has increased the dependence of both organizations and individuals on the information stored and communicated using these systems. This, in turn, has led to a heightened awareness of the need to protect data and resources from disclosure, to guarantee the authenticity of data and messages, and to protect systems from network-based attacks. Second, the disciplines of cryptography and network security have matured, leading to the development of practical, readily available applications to enforce network security. Objectives It is the purpose of this book to provide a practical survey of network security applications and standards. The emphasis is on applications that are widely used on the Internet and for corporate networks, and on standards, especially Internet standards, that have been widely deployed. Intended Audience The book is intended for both an academic and a professional audience. As a textbook, it is intended as a one-semester undergraduate course on network security for computer science, computer engineering, and electrical engineering majors. The book also serves as a basic reference volume and is suitable for self-study. Plan of the Book The book is organized in three parts: I. Cryptography: A concise survey of the cryptographic algorithms and protocols i reportunderlyingnetwork security applications, including encryption, hash functions, digital signatures, and key exchange. i See Appen~ II. Network Security Applications: Covers important network security tools and applications, including Kerberos, X.509v3 certificates, PGP, S/MIME, IP Secu- rity, SSL/TLS, SET, and SNMPv3. III. System Security: Looks at system-level security issues, including the threat of and countermeasures for intruders and viruses, and the use of firewalls and trusted systems. This book i A more detailed, chapter-by-chapter summary appears at the end of Chapter ~ (CNS2e). 1. In addition, the book includes an extensive glossary, a list of frequently used detailed an< acronyms, and a bibliography. There are also end-of-chapter problems and sugges- of which co tions for further reading. dards (NSE 3. NSE1e in covers SNh Internet Services for Instructors and Students There is a Web page for this book that provides support for students and instruc tors. The page includes links to relevant sites, transparency masters of figures in the book in PDF (Adobe Acrobat) format, and sign-up information for the book's Internet mailing list. The Web page is at ...

761 citations

Patent
06 Nov 2003
TL;DR: In this paper, the authors proposed a firewall that achieves maximum network security and maximum user convenience by employing envoys that exhibit the security robustness of prior-art proxies and the transparency and ease-of-use of packet filters, combining the best of both worlds.
Abstract: The present invention provides a firewall that achieves maximum network security and maximum user convenience. The firewall employs “envoys” that exhibit the security robustness of prior-art proxies and the transparency and ease-of-use of prior-art packet filters, combining the best of both worlds. No traffic can pass through the firewall unless the firewall has established an envoy for that traffic. Both connection-oriented (e.g., TCP) and connectionless (e.g., UDP-based) services may be handled using envoys. Establishment of an envoy may be subjected to a myriad of tests to “qualify” the user, the requested communication, or both. Therefore, a high level of security may be achieved. The usual added burden of prior-art proxy systems is avoided in such a way as to achieve fall transparency-the user can use standard applications and need not even know of the existence of the firewall. To achieve full transparency, the firewall is configured as two or more sets of virtual hosts. The firewall is, therefore, “multi-homed,” each home being independently configurable. One set of hosts responds to addresses on a first network interface of the firewall. Another set of hosts responds to addresses on a second network interface of the firewall. In one aspect, programmable transparency is achieved by establishing DNS mappings between remote hosts to be accessed through one of the network interfaces and respective virtual hosts on that interface. In another aspect, automatic transparency may be achieved using code for dynamically mapping remote hosts to virtual hosts in accordance with a technique referred to herein as dynamic DNS, or DDNS.

751 citations

Book
06 Mar 2003
TL;DR: The first edition made a number of predictions, explicitly or implicitly, about the growth of the Web and the patterns of Internet connectivity vastly increased, and warned of issues posed by home LANs, and about the problems caused by roaming laptops.
Abstract: From the Book: But after a time, as Frodo did not show any sign of writing a book on the spot, the hobbits returned to their questions about doings in the Shire. Lord of the Rings —J.R.R. TOLKIEN The first printing of the First Edition appeared at the Las Vegas Interop in May, 1994. At that same show appeared the first of many commercial firewall products. In many ways, the field has matured since then: You can buy a decent firewall off the shelf from many vendors. The problem of deploying that firewall in a secure and useful manner remains. We have studied many Internet access arrangements in which the only secure component was the firewall itself—it was easily bypassed by attackers going after the “protected” inside machines. Before the trivestiture of AT&T/Lucent/NCR, there were over 300,000 hosts behind at least six firewalls, plus special access arrangements with some 200 business partners. Our first edition did not discuss the massive sniffing attacks discovered in the spring of 1994. Sniffers had been running on important Internet Service Provider (ISP) machines for months—machines that had access to a major percentage of the ISP’s packet flow. By some estimates, these sniffers captured over a million host name/user name/password sets from passing telnet, ftp, and rlogin sessions. There were also reports of increased hacker activity on military sites. It’s obvious what must have happened: If you are a hacker with a million passwords in your pocket, you are going to look for the most interesting targets, and .mil certainly qualifies. Since the First Edition, we have been slowlylosing the Internet arms race. The hackers have developed and deployed tools for attacks we had been anticipating for years. IP spoofing Shimomura, 1996 and TCP hijacking are now quite common, according to the Computer Emergency Response Team (CERT). ISPs report that attacks on the Internet’s infrastructure are increasing. There was one attack we chose not to include in the First Edition: the SYN-flooding denial-of- service attack that seemed to be unstoppable. Of course, the Bad Guys learned about the attack anyway, making us regret that we had deleted that paragraph in the first place. We still believe that it is better to disseminate this information, informing saints and sinners at the same time. The saints need all the help they can get, and the sinners have their own channels of communication.Crystal Ball or Bowling Ball?The first edition made a number of predictions, explicitly or implicitly. Was our foresight accurate? Our biggest failure was neglecting to foresee how successful the Internet would become. We barely mentioned the Web and declined a suggestion to use some weird syntax when listing software resources. The syntax, of course, was the URL... Concomitant with the growth of the Web, the patterns of Internet connectivity vastly increased. We assumed that a company would have only a few external connections—few enough that they’d be easy to keep track of, and to firewall. Today’s spaghetti topology was a surprise. We didn’t realize that PCs would become Internet clients as soon as they did. We did, however, warn that as personal machines became more capable, they’d become more vulnerable. Experience has proved us very correct on that point. We did anticipate high-speed home connections, though we spoke of ISDN, rather than cable modems or DSL. (We had high-speed connectivity even then, though it was slow by today’s standards.) We also warned of issues posed by home LANs, and we warned about the problems caused by roaming laptops. We were overly optimistic about the deployment of IPv6 (which was called IPng back then, as the choice hadn’t been finalized). It still hasn’t been deployed, and its future is still somewhat uncertain. We were correct, though, about the most fundamental point we made: Buggy host software is a major security issue. In fact, we called it the “fundamental theorem of firewalls”: Most hosts cannot meet our requirements: they run too many programs that are too large. Therefore, the only solution is to isolate them behind a firewall if you wish to run any programs at all. If anything, we were too conservative.Our ApproachThis book is nearly a complete rewrite of the first edition. The approach is different, and so are many of the technical details. Most people don’t build their own firewalls anymore. There are far more Internet users, and the economic stakes are higher. The Internet is a factor in warfare. The field of study is also much larger—there is too much to cover in a single book. One reviewer suggested that Chapters 2 and 3 could be a six-volume set. (They were originally one mammoth chapter.) Our goal, as always, is to teach an approach to security. We took far too long to write this edition, but one of the reasons why the first edition survived as long as it did was that we concentrated on the concepts, rather than details specific to a particular product at a particular time. The right frame of mind goes a long way toward understanding security issues and making reasonable security decisions. We’ve tried to include anecdotes, stories, and comments to make our points. Some complain that our approach is too academic, or too UNIX-centric, that we are too idealistic, and don’t describe many of the most common computing tools. We are trying to teach attitudes here more than specific bits and bytes. Most people have hideously poor computing habits and network hygiene. We try to use a safer world ourselves, and are trying to convey how we think it should be. The chapter outline follows, but we want to emphasize the following: It is OK to skip the hard parts. If we dive into detail that is not useful to you, feel free to move on. The introduction covers the overall philosophy of security, with a variety of time-tested maxims. As in the first edition, Chapter 2 discusses most of the important protocols, from a security point of view. We moved material about higher-layer protocols to Chapter 3. The Web merits a chapter of its own. The next part discusses the threats we are dealing with: the kinds of attacks in Chapter 5, and some of the tools and techniques used to attack hosts and networks in Chapter 6. Part III covers some of the tools and techniques we can use to make our networking world safer. We cover authentication tools in Chapter 7, and safer network servicing software in Chapter 8. Part IV covers firewalls and virtual private networks (VPNs). Chapter 9 introduces various types of firewalls and filtering techniques, and Chapter 10 summarizes some reasonable policies for filtering some of the more essential services discussed in Chapter 2. If you don’t find advice about filtering a service you like, we probably think it is too dangerous (refer to Chapter 2). Chapter 11 covers a lot of the deep details of firewalls, including their configuration, administration, and design. It is certainly not a complete discussion of the subject, but should give readers a good start. VPN tunnels, including holes through firewalls, are covered in some detail in Chapter 12. There is more detail in Chapter 18. In Part V, we apply these tools and lessons to organizations. Chapter 13 examines the problems and practices on modern intranets. See Chapter 15 for information about deploying a hacking-resistant host, which is useful in any part of an intranet. Though we don’t especially like intrusion detection systems (IDSs) very much, they do play a role in security, and are discussed in Chapter 15. The last part offers a couple of stories and some further details. The Berferd chapter is largely unchanged, and we have added “The Taking of Clark,” a real-life story about a minor break-in that taught useful lessons. Chapter 18 discusses secure communications over insecure networks, in quite some detail. For even further detail, Appendix A has a short introduction to cryptography. The conclusion offers some predictions by the authors, with justifications. If the predictions are wrong, perhaps the justifications will be instructive. (We don’t have a great track record as prophets.) Appendix B provides a number of resources for keeping up in this rapidly changing field.Errata and UpdatesEveryone and every thing seems to have a Web site these days; this book is no exception. Our “official” Web site is . We’ll post an errata list there; we’ll also keep an up-to-date list of other useful Web resources. If you find any errors—we hope there aren’t many—please let us know via e-mail at .AcknowledgmentsFor many kindnesses, we’d like to thank Joe Bigler, Steve “Hollywood” Branigan, Hal Burch, Brian Clapper, David Crocker, Tom Dow, Phil Edwards and the Internet Public Library, Anja Feldmann, Karen Gettman, Brian Kernighan, David Korman, Tom Limoncelli, Norma Loquendi, Cat Okita, Robert Oliver, Vern Paxson, Marcus Ranum, Eric Rescorla, Guido van Rooij, Luann Rouff (a most excellent copy editor), Abba Rubin, Peter Salus, Glenn Sieb, Karl Siil (we’ll always have Boston), Irina Strizhevskaya, Rob Thomas, Win Treese, Dan Wallach, Avishai Wool, Karen Yannetta, and Michal Zalewski, among many others. BILL CHESWICK STEVE BELLOVIN AVI RUBIN 020163466XP01302003

730 citations

Journal ArticleDOI
TL;DR: The findings indicate that TAM is a valid theoretical framework to understand users adoption of the Web for retail purposes, and Internet users’ perceived usefulness and perceived ease of use were effected differentially by Opinion Leadership, Web Shopping Compatibility, Internet Self-Efficacy, Perceived Web Security, Impulsiveness, Satisfaction with web sites, and Shopping Orientation.

697 citations


Network Information
Related Topics (5)
Server
79.5K papers, 1.4M citations
85% related
Encryption
98.3K papers, 1.4M citations
85% related
Mobile computing
51.3K papers, 1M citations
84% related
The Internet
213.2K papers, 3.8M citations
84% related
Network packet
159.7K papers, 2.2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202314
202233
2021144
2020180
2019183
2018185