scispace - formally typeset
Search or ask a question
Topic

Intracellular signal transduction

About: Intracellular signal transduction is a research topic. Over the lifetime, 2992 publications have been published within this topic receiving 152144 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Together, at least three mechanistically distinct arms of the UPR regulate the expression of numerous genes that function within the secretory pathway but also affect broad aspects of cell fate and the metabolism of proteins, amino acids and lipids.
Abstract: The endoplasmic reticulum (ER) responds to the accumulation of unfolded proteins in its lumen (ER stress) by activating intracellular signal transduction pathways - cumulatively called the unfolded protein response (UPR). Together, at least three mechanistically distinct arms of the UPR regulate the expression of numerous genes that function within the secretory pathway but also affect broad aspects of cell fate and the metabolism of proteins, amino acids and lipids. The arms of the UPR are integrated to provide a response that remodels the secretory apparatus and aligns cellular physiology to the demands imposed by ER stress.

5,701 citations

Journal ArticleDOI
25 Nov 2011-Science
TL;DR: The vast majority of proteins that a cell secretes or displays on its surface first enter the endoplasmic reticulum, where they fold and assemble, and only properly assembled proteins advance from the ER to the cell surface.
Abstract: The vast majority of proteins that a cell secretes or displays on its surface first enter the endoplasmic reticulum (ER), where they fold and assemble. Only properly assembled proteins advance from the ER to the cell surface. To ascertain fidelity in protein folding, cells regulate the protein-folding capacity in the ER according to need. The ER responds to the burden of unfolded proteins in its lumen (ER stress) by activating intracellular signal transduction pathways, collectively termed the unfolded protein response (UPR). Together, at least three mechanistically distinct branches of the UPR regulate the expression of numerous genes that maintain homeostasis in the ER or induce apoptosis if ER stress remains unmitigated. Recent advances shed light on mechanistic complexities and on the role of the UPR in numerous diseases.

4,468 citations

Journal ArticleDOI
14 Apr 1995-Science
TL;DR: Recent advances in understanding of intracellular signal transduction pathways regulated by the integrin family of adhesion receptors are focused on.
Abstract: Adhesive interactions play critical roles in directing the migration, proliferation, and differentiation of cells; aberrations in such interactions can lead to pathological disorders. These adhesive interactions, mediated by cell surface receptors that bind to ligands on adjacent cells or in the extracellular matrix, also regulate intracellular signal transduction pathways that control adhesion-induced changes in cell physiology. Though the extracellular molecular interactions involving many adhesion receptors have been well characterized, the adhesion-dependent intracellular signaling events that regulate these physiological alterations have only begun to be elucidated. This article will focus on recent advances in our understanding of intracellular signal transduction pathways regulated by the integrin family of adhesion receptors.

3,000 citations

Journal ArticleDOI
09 Feb 1996-Cell
TL;DR: It is predicted that the long intrACEllular domain form of OB-R is crucial for initiating intracellular signal transduction, and as a corollary, the inability to produce this form ofOB-R leads to the severe obese phenotype found in db/db mice.

2,228 citations

Journal ArticleDOI
26 Jul 2007-Nature
TL;DR: BAK1 is shown to have a functional role in PRR-dependent signalling, which initiates innate immunity, and evidence is provided that FLS2 and BAK1 form a complex in vivo, in a specific ligand-dependent manner, within the first minutes of stimulation with flagellin.
Abstract: Plants sense potential microbial invaders by using pattern-recognition receptors to recognize pathogen-associated molecular patterns (PAMPs). In Arabidopsis thaliana, the leucine-rich repeat receptor kinases flagellin-sensitive 2 (FLS2) (ref. 2) and elongation factor Tu receptor (EFR) (ref. 3) act as pattern-recognition receptors for the bacterial PAMPs flagellin and elongation factor Tu (EF-Tu) (ref. 5) and contribute to resistance against bacterial pathogens. Little is known about the molecular mechanisms that link receptor activation to intracellular signal transduction. Here we show that BAK1 (BRI1-associated receptor kinase 1), a leucine-rich repeat receptor-like kinase that has been reported to regulate the brassinosteroid receptor BRI1 (refs 6,7), is involved in signalling by FLS2 and EFR. Plants carrying bak1 mutations show normal flagellin binding but abnormal early and late flagellin-triggered responses, indicating that BAK1 acts as a positive regulator in signalling. The bak1-mutant plants also show a reduction in early, but not late, EF-Tu-triggered responses. The decrease in responses to PAMPs is not due to reduced sensitivity to brassinosteroids. We provide evidence that FLS2 and BAK1 form a complex in vivo, in a specific ligand-dependent manner, within the first minutes of stimulation with flagellin. Thus, BAK1 is not only associated with developmental regulation through the plant hormone receptor BRI1 (refs 6,7), but also has a functional role in PRR-dependent signalling, which initiates innate immunity.

1,659 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
91% related
Receptor
159.3K papers, 8.2M citations
91% related
Gene expression
113.3K papers, 5.5M citations
88% related
Apoptosis
115.4K papers, 4.8M citations
87% related
Cell culture
133.3K papers, 5.3M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20222
2021117
202090
201985
201884
201772