scispace - formally typeset
Search or ask a question

Showing papers on "Intramolecular reaction published in 1984"


Journal ArticleDOI
TL;DR: Recent advances and examples of the intramolecular Diels-Alder reaction are summarized and applications to the total synthesis of natural products, both completed and in progress, noted as discussed by the authors.
Abstract: Recent advances and examples of the intramolecular Diels–Alder reaction are summarized and applications to the total synthesis of natural products, both completed and in progress, noted. A detailed...

296 citations


BookDOI
01 Jan 1984
TL;DR: In this article, the authors present a survey of the application of electron transfer in organic chemistry, including photooxygenation, N-Arylanilides and N-Benzoylenamines.
Abstract: 1. Photoaddition and Photocyclization Processes of Aromatic Compounds.- 1. Introduction.- 2. Intermolecular Reactions.- 2.1. Arenes and Ethenes.- 2.2. Arenes and Acetylenes.- 2.3. Arenes and 1,3-Dienes.- 2.4. Acyclic Additions to Arenes and Reduction Processes.- 2.5. Arene Photodimerizations.- 3. Intramolecular Cyclization Processes.- 3.1. Arene-Ethene and Arene-Ethyne Systems.- 3.1.1. Hydrocarbon Systems.- 3.1.2. Aryl Enones.- 3.1.3. Aryl Ethenyl Ethers, Thioethers, and N- Aryl Enamines.- 3.1.4. Cyclizations of N-Arylanilides and N-Benzoylenamines.- 3.2. Aryl Butadiene and Butenyne Systems.- 3.3. Intramolecular Photocoupling of Arenes.- 3.3.1. Stilbene-Phenanthrene-Type Cyclizations.- 3.3.2. Photocoupling of Arenes with Intervening Units Other Than Ethylene.- 3.3.3. Coupling of Arenes as a Result of Halogen Acid Photoelimination.- 3.4. Photocyclizations of o-Substituted Arenes.- References.- 2. Enone Photochemical Cycloaddition in Organic Synthesis.- 1. Introduction.- 2. The Reaction Mechanism.- 3. Regiochemistry of Enone Cycloaddition.- 4. Stereochemistry of Enone Cycloaddition.- 5. Intramolecular Enone Cycloadditions.- 6. The de Mayo Reaction.- 6.1. Cyclic Diketones.- 6.2. Acyclic 1,3-Diketones.- 6.3. Intramolecular Additions of Enolized Diketones.- 7. Intermolecular Enone Cycloaddition.- 8. Photochemical Cycloaddition between Enones and Allenes.- References.- 3. Synthetic Aspects of Photochemical Electron Transfer Reactions.- 1. Introduction.- 1.1. Synthetic Applications of Photochemical Reactions.- 1.2. Electron Transfer in Excited-State Chemistry.- 1.2.1. Exciplex Formation and Decay.- 1.2.2. Electron Transfer Efficiencies and Rates.- 1.3. Chemical Consequence of Electron Transfer.- 1.3.1. General Survey and Predictions.- 1.3.2. Overview of Coverage.- 2. Reaction Pathways Followed in Electron Transfer Photochemistry.- 2.1. Alkenes and Strained Ring Hydrocarbons.- 2.1.1. Alkenes as Electron Acceptors and Donors.- 2.1.2. Cyclopropene Electron Transfer Photochemistry.- 2.1.3. Cyclopropanes and Other Strained Ring Systems as Electron Donors.- 2.2. Amines.- 2.2.1. General Considerations.- 2.2.2. Amine-Olefin Electron Transfer Photochemistry.- 2.2.3. Amine-Ketone Electron Transfer Photochemistry.- 2.3. Ketones.- 2.3.1. General Considerations.- 2.3.2. Ketone Electron Transfer Photochemistry.- 2.3.3. Quinone Electron Transfer Photochemistry.- 2.4. Electron Transfer Photooxygenations.- 2.4.1. General Considerations.- 2.4.2. Class 1 Photooxygenations.- 2.4.3. Class 2 Photooxygenations.- 2.4.4. Class 3 Photooxygenations.- 2.5. Aromatic Systems.- 2.5.1. Aromatic Photosubstitution Reactions.- 2.5.2. Photobenzylations by Electron Transfer Mechanisms.- 2.5.3. Birch and Related Photoreductions of Aromatic Compounds.- 2.6. Electron Transfer Photochemistry of Nitrogen Heteroaromatic Salts and Related Systems.- 2.6.1. General Considerations.- 2.6.2. Electron Transfer Photochemistry of Pyridinium and Related Salts.- 2.6.3. Iminium Salt Photochemistry.- 2.7. Other Electron Transfer Initiated Photoreactions.- 2.7.1. Olefin Cycloadditions and Retro Processes.- 2.7.2. Phthalimide Photochemistry.- 2.7.3. Photodecarboxylations.- 2.7.4. Metal Catalyzed Photoreactions.- References.- 4. Phthalimide and Its Derivatives.- 1. Introduction.- 2. Hydrogen Abstraction.- 2.1. Photoreduction and Photoaddition.- 2.2. Intramolecular Photocyclization.- 3. Reaction with Alkenes.- 3.1. Ring Expansion.- 3.2. Solvent Incorporation.- 3.3. Intramolecular Reaction.- 4. Cleavage Reactions.- 4.1. ?-Cleavage.- 4.2. ?-Cleavage.- 5. Spectra and Excited States.- 6. Summary.- References.- 5. Photochemical Addition Reactions in the Benzo(b)Thiophene, Benzo(b)Furan, and Indole Series.- 1. Introduction.- 1.1. Absorption and Emission Characteristics.- 2. Photochemistry.- 2.1. Oxetan Formation.- 2.2. Dimerization.- 2.3. Photochemical Reactions with Acetylene Esters.- 3. Benzo(b)thiophene.- 4. Indoles.- 5. Benzo(b)thiophenes.- 6. Benzo(b)furans.- 7. Thermal Reactions of the 2-Hetero-bicyclo(3.2.0)heptadienes.- 8. 1,3-Dimethylindole.- 9. Photocycloadditions of Benzo(b)thiophene to Alkenes.- References.- 6. Azirine Photolysis and Cycloaddition Reactions.- 1. Introduction.- 1.1. UV Spectra of Arylazirines.- 1.1.1. Evidence for Nitrile Ylide Formation.- 2. Cycloaddition Reactions.- 2.1. Addition with Electron-Deficient Olefins.- 2.1.1. Mechanism of Cycloaddition to Olefines.- 2.2. Addition to Aldehydes and Ketones.- 2.3. Addition to Esters.- 2.4. Additions to Acid Chloride and Anhydrides.- 2.5. Additions to Carbon Dioxide and Carbon Disulfide.- 2.6. Additions to Ketenes, Carbodiimides, Isocyanates, and Isothiocyanates.- 3. Photodimerization of Azirines.- 4. Intramolecular Cycloaddition Reactions.- 4.1. Rearrangement of 2-Vinylazirines.- 4.2. Rearrangements of Isoxazoles and Oxazoles.- 5. Mechanisms for Cycloaddition Reactions of Nitrile Ylides.- 5.1. The 1,1-Cycloaddition Process.- 5.2. Summary of 1,1-Cycloaddition Mode.- 5.3. Other Examples of 1,1-Cycloaddition.- 5.4. 1,1- and 1,3-Cycloaddition in Competition.- 6. Fragmentation Reactions.- 6.1. Competitive Involvement of Ylide Formation.- 7. Group Migration Reactions.- References.- 7. Photoremovable Protecting Groups.- 1. Introduction.- 2. Alcohols.- 2.1. Sulfonic Acid Esters.- 2.2. o-Nitrobenzyl Ethers.- 2.3. Nitrates, Nitrites, Dimelhylthiocarbamates, and Aryl Azides.- 3. Diols.- 4. Phenols.- 5. Aldehydes and Ketones.- 6. Carboxylic Acids and Amides.- 6.1. o-Nitrobenzyl Esters.- 6.2. o-Nitrophenylamino Derivatives.- 6.3. Phenacyl Esters.- 6.4. 2,4-Dinitrophenylthio Esters, Benzoin Esters, and Aryl Azides.- 7. Amines.- 7.1. Benzyloxycarbonyl Compounds.- 7.2. Sulfonamides.- 7.3. Formamides, N-Oxides, and 4,5-Diaryl-4-oxazoline-2-ones.- 8. Phosphates.- 9. Conclusion.- References.- 8. Photochemical Synthesis of Oxetans.- 1. Introduction.- 2. Reaction Mechanism.- 2.1. Carbonyl Excited States.- 2.2. Triplet Energies.- 2.3. Competing Reactions.- 2.4. Hydrogen Abstraction.- 3. Alkene Addends.- 3.1. Simply Substituted Alkenes.- 3.2. Dienes and Trienes.- 3.3. Allenes and Ketenimines.- 3.4. Electron-Deficient Alkenes.- 3.5. Vinyl Ethers.- 3.6. Heteroaromatics.- 4. Carbonyl Addends.- 4.1. ?-Dicarbonyls.- 4.2. Quinones.- 4.3. Miscellaneous Carbonyls.- 4.4. Enones and Ynones.- 5. Intramolecular Cycloadditions.- 6. Chemical Reactions of Oxetans.- References.- 9. Equipment and Techniques.- 1. Mercury Vapor Lamps.- 2. Lamps in Conjunction with Filters.- 3. Photochemical Apparatus.- 4. Actinometry.- 4.1. Solution Phase Systems.- 4.2. Electronic Actinometers.- 5. Purity of Solvents and Gases.- References.

213 citations



Journal ArticleDOI
TL;DR: In this paper, new and efficient procedures are described for the conversion of homoallylic alcohols to esters of diazoacetic acid and for the further intramolecular cyclopropanation of those esters.

117 citations



Journal ArticleDOI
TL;DR: Synthese a partir du glutarate de dimethyle via linsertion intramoleculaire d'un α-acylcarbene dans une liaison C−H inactivee.
Abstract: Synthese a partir du glutarate de dimethyle via l'insertion intramoleculaire d'un α-acylcarbene dans une liaison C−H inactivee

100 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present diverses methodes de construction du cycle a 5 carbones sur des composes cycliques (systemes [3.n.0] ).
Abstract: Presentation des diverses methodes de construction du cycle a 5 carbones sur des composes cycliques (systemes [3.n.0]). Exemples d'incorporation de groupes C 3 dans un compose cyclique avec differents groupes fonctionnels et methodologie de la cyclisation. Aspects stereochimiques et regiochimiques

100 citations


Journal ArticleDOI
TL;DR: In this paper, a partir du derive t-butyldimethylsiloxymethyl-4, synthese du tetrahydro-3,6,7,8 benzo [1,2-b: 4,3-b] dipyrroledicarboxylates-2,6
Abstract: Additions intramoleculaires de N-alcyne-3yl chloro-6 pyridazinecarbamates-3 de methyle: obtention d'indolinecarboxylates-1 de methyle; a partir du derive t-butyldimethylsiloxymethyl-4, synthese du tetrahydro-3,6,7,8 benzo [1,2-b: 4,3-b'] dipyrroledicarboxylates-2,6

94 citations



Journal ArticleDOI
TL;DR: In this paper, an unstable associate of the 6-cis and 2,6-dicis-2-4 retinals and bacterioopsin is formed, possibly allowed by the lack of the cyclohexyl ring and thus the greater flexibility of the chromophore.
Abstract: samples at 80 K. The C-C band at 1558 cm-' represents the initial all-trans pigment while that at 1575 cm-* almost certainly arises from the short-wavelength M-type intermediate absorbing at ca. 380 nm. The results agree with previously determined correlation between A, and C=C stretching frequency and expected temperature dependence of M formation.12 On combination of the 6-cis and 2,6-dicis isomers of 2-4 with bacterioopsin, a broad absorption is noted with a A, , of 450-460 nm with a shoulder at 510 nm. Extraction of the pigment with methylene chloride yields the respective 6-cis or 2,6-dicis isomer. These pigments are rapidly (5 min) destroyed by hydroxylamine or all-trans-retinal. On irradiation, the absorption shifts to 487 nm, increases in intensity, and is identical with that of the all-trans pigments. Only the respective all-trans isomer is obtained when these irradiated pigments are extracted with methylene chloride. These results indicate that an unstable associate of the 6-cisand 2,6-dicis-2-4 retinals and bacterioopsin is formed, possibly allowed by the lack of the cyclohexyl ring and thus the greater flexibility of the chromophore. The above experiments demonstrate that these acyclic chromophores can form pigments with bacterioopsin which show light-induced absorption and pH changes. As these retinal derivatives lack both a cyclohexyl ring and the fifth C=C, neither of these structural elements are evidently essential for these functions of the pigment. A similar but more restrictive conclusion has been proposed for the 5,6-ethylene bond by our studies of the 5,6-dihydroretinal pigments.13 These results are consistent with isomerization and charge separation being thd primary event14 and indicate that the proton pumping and photocycling are dependent on the polyene chain portion of the retinal chromophore.

89 citations



Journal ArticleDOI
TL;DR: Ion-exchanged montmorillonites can be used as heterogeneous catalysts for the dehydration of liquid alcohols in pressure vessels at 200 °C as discussed by the authors, and they are more selective than concentrated mineral acids and have the distinct advantage of being much easier to separate from the products.

Journal ArticleDOI
TL;DR: In this paper, trialkoxyphosphorane-thiolesters were obtained by reaction of oxalimides 9 with trialkyl phosphite, and were efficiently cyclized by an intramolecular Wittig reaction to give carbapenems.


Journal ArticleDOI
TL;DR: Le radical intermediaire genere par desoxygenation d'alcools peut operer une cyclisation intramoleculaire quand des liaisons C≡C et c≡N sont presentes.
Abstract: Le radical intermediaire genere par desoxygenation d'alcools peut operer une cyclisation intramoleculaire quand des liaisons C≡C et C≡N sont presentes. On prepare ainsi des cetones bicycliques a partir, soit de cetones monocycliques soit d'olefines cycliques

Journal ArticleDOI
TL;DR: Cyclisation d'undecatetraenes-1,3,8,10 disubstitues en derives de tetrahydro-3a,6,7,7a indane, catalysee par l'hexachloroantimoniate de tris-(bromo-4 phenyl) aminium.
Abstract: Cyclisation d'undecatetraenes-1,3,8,10 disubstitues en derives de tetrahydro-3a,6,7,7a indane, catalysee par l'hexachloroantimoniate de tris-(bromo-4 phenyl) aminium

Journal ArticleDOI
TL;DR: On applique la reaction ene aux alcenyl-2 cyclopentanones and cyclohexanones, catalysee par les halogenures d'alkylaluminium as mentioned in this paper.
Abstract: On applique la reaction ene aux alcenyl-2 cyclopentanones et cyclohexanones, catalysee par les halogenures d'alkylaluminium

Journal ArticleDOI
TL;DR: Etude des reactions d'addition photochimique d'ethers ou sulfures d'alkyl et trimethylsilymethyl avec le phenyl-2 pyrroline-1ium and des photoadditions intramoleculaires d'ω-trimethylsilmethoxyalkyl-1, -2 ou -4 quinoleineiniums as discussed by the authors.
Abstract: Etude des reactions d'addition photochimique d'ethers ou sulfures d'alkyl et trimethylsilymethyl avec le phenyl-2 pyrroline-1ium et des photoadditions intramoleculaires d'ω-trimethylsilmethoxyalkyl-1, -2 ou -4 quinoleineiniums

Journal ArticleDOI
TL;DR: In this paper, N-Halogeno-N-alkoxyamides undergo intramolecular aromatic substitution by thermal- or Lewis acid-catalysed heterolysis of the nitrogen-halogen bond.
Abstract: N-Halogeno-N-alkoxyamides undergo intramolecular aromatic substitution by thermal- or Lewis acid-catalysed heterolysis of the nitrogen–halogen bond. N-Acyl-N-alkoxynitrenium ions are likely intermediates. N-Chloro-N-methoxybiphenyl-2-carboxamide (4) yields N-methoxyphenanthridone (11) quantitatively with AgBF4, while O-2-phenylethyl-N-chlorobenzohydroxamate (19) is converted in good yield into N-benzoyl-3,4-dihydro-1H-2,1-benzoxazine (21) with AgBF4, AgClO4, HgO, and Hg(OAc)2. N-Acetyl-3,4-dihydro-1H-2,1-benzoxazine (22) is formed similarly. O-3-Phenylpropyl-N-chlorobenzohydroxamate (23) cyclises to N-benzoyl-4,5-dihydro-1H,3H-2,1-benzoxazepine (24) with AgBF4.

Journal Article
TL;DR: Etude de la stereoselectivite de la cyclisation intramoleculaire des N-[ methyl-1 pentene-4yl]- et N-[methyl-1 hexene-5yl] O-benzyl carbamates.
Abstract: Etude de la stereoselectivite de la cyclisation intramoleculaire des N-[methyl-1 pentene-4yl]- et N-[methyl-1 hexene-5yl] O-benzyl carbamates

Journal ArticleDOI
TL;DR: In this paper, a preparation par voie radicalaire de polymethacrylate polyacryl and polystyrene avec des groupes lateraux photochromes spiropyranne.
Abstract: Preparation par voie radicalaire de polymethacrylate polyacrylate et polystyrene avec des groupes lateraux photochromes spiropyranne. Etude par photolyse eclair de la decoloration thermique

Journal ArticleDOI
TL;DR: In this article, the mesylate of 3-butyn-l-ol gave a mixture of unexpected silylcyclobutene and cyclopropylidene derivative.


Journal ArticleDOI
TL;DR: In this article, a cyclisation du pentyne-5yl-1cyclopentene en tricyclo [6.3.0.0 4,8 ] undecene-1one-3 avec CO 2 (CO) 8 suivie de la conversion en bis norisocomene
Abstract: Preparation et cyclisation du pentyne-5yl-1cyclopentene en tricyclo [6.3.0.0 4,8 ] undecene-1one-3 avec CO 2 (CO) 8 suivie de la conversion en bis norisocomene

Journal ArticleDOI
TL;DR: In this paper, a total synthesis of the ergot alkaloid paliclavine (20 ), in optically active form, was described based on the intramolecular dipolar cycloaddition reaction of a nitrile oxide to a neighboring olefinic appendage bearing an allylic asymmetric center.

Journal ArticleDOI
TL;DR: The influence of the temperature and des substituants sur le cycle anilino sur la reaction de cyclisation du titre; cyclisation analogue de diethylacetals de N-mesylanilino-3 propanals en mesyl-1 tetrahydro-1,2,3,4 quinoleines as mentioned in this paper.
Abstract: Influence de la temperature et des substituants sur le cycle anilino sur la reaction de cyclisation du titre; cyclisation analogue de diethylacetals de N-mesylanilino-3 propanals en mesyl-1 tetrahydro-1,2,3,4 quinoleines


Journal ArticleDOI
TL;DR: Methyl 2,3,4-tri-O-benzyl-α,D-glucopyranoside has been converted into Neu5Ac α(2-6)Glu and Neu 5Ac β (2 -6) Glu derivatives, using an intramolecular oximercuration-demercuration reaction.

Journal ArticleDOI
TL;DR: In this article, it was shown that cyclisation of the vinyl ether bromides with tri-n-butylstannane produces precursors to β-oxy-γ-butyrolactones.

Journal ArticleDOI
TL;DR: In this article, Lanthanide reducing agents have been found to effectively promote intramolecular alkylation reactions to provide the corresponding bicyclic alcohols in excellent yields, and they have been used to produce bicyclic alkyl alcohols.