scispace - formally typeset
Search or ask a question

Showing papers on "Intraperitoneal injection published in 2015"


Journal ArticleDOI
TL;DR: It was found that exposure to 70% oxygen immediately after the administration of BHT initially delayed the epithelial cell proliferation and the decrease in the percentage of newly synthesized type III collagen that occurred after BHT alone.
Abstract: Changes in cell proliferation and in collagen synthesis were studied in young adult male BALB/c mice injected intraperitoneally with 400 mg/kg of butylated hydroxytoluene (BHT) in corn oil or corn oil alone and immediately exposed to 70% oxygen or air for 6 days. Mice received [3H]thymidine either as a single injection 90 min before being killed or as a continual infusion via an osmotic minipump. Autoradiography was done 2 to 14 days after BHT injection, and cell kinetic studies were performed. In a similar experiment, mice were injected intraperitoneally with [3H]proline 3 h before being killed, and type l/type III collagen ratio in newly synthesized lung collagen was determined. We found that exposure to 70% oxygen immediately after the administration of BHT initially delayed the epithelial cell proliferation and the decrease in the percentage of newly synthesized type III collagen that occurred after BHT alone. Once the animals were removed from oxygen there was a compensatory burst of cell proliferation and a precipitous drop in the percentage of newly synthesized type III collagen. The proliferating cell population after removal from oxygen was primarily interstitial and not epithelial. When exposure to oxygen was delayed, cell proliferation was similar to that seen after BHT injection alone.

99 citations


Journal ArticleDOI
TL;DR: The nanoparticles tested had no toxic effects on blood parameters and growth of rats, suggesting their potential applicability as remedies or in drug delivery systems.
Abstract: Carbon nanoparticles have recently drawn intense attention in biomedical applications. Hence, there is a need for further in vivo investigations of their biocompatibility and biodistribution via various exposure routes. We hypothesized that intraperitoneally injected diamond, graphite, and graphene oxide nanoparticles may have different biodistribution and exert different effects on the intact organism. Forty Wistar rats were divided into four groups: the control and treated with nanoparticles by intraperitoneal injection (4 mg of nanoparticles/kg body weight) eight times during the 4-week period. Blood was collected for evaluation of blood morphology and biochemistry parameters. Photographs of the general appearance of each rat’s interior were taken immediately after sacrifice. The organs were excised and their macroscopic structure was visualized using a stereomicroscope. The nanoparticles were retained in the body, mostly as agglomerates. The largest agglomerates (up to 10 mm in diameter) were seen in the proximity of the injection place in the stomach serous membrane, between the connective tissues of the abdominal skin, muscles, and peritoneum. Numerous smaller, spherical-shaped aggregates (diameter around 2 mm) were lodged among the mesentery. Moreover, in the connective and lipid tissue in the proximity of the liver and spleen serosa, small aggregates of graphite and graphene oxide nanoparticles were observed. However, all tested nanoparticles did not affect health and growth of rats. The nanoparticles had no toxic effects on blood parameters and growth of rats, suggesting their potential applicability as remedies or in drug delivery systems.

79 citations


Journal ArticleDOI
TL;DR: Iron overload in the brain exacerbates dopaminergic neuronal death in SNpc and leads to the onset of PD, and the increased nigral iron content exacerbates the oxidative stress levels, promoting apoptosis through the Bcl-2/Bax pathway and the activated caspase-3 pathway in thebrain.

70 citations


Journal ArticleDOI
19 Mar 2015-PLOS ONE
TL;DR: It is suggested that hypoxic preconditioning of MSCs was an effective approach to enhance their therapeutic effect for DED, which may be due to their augmented angiogenesis and neuroprotection.
Abstract: The aim of the present study was to examine whether hypoxia preconditioning could improve therapeutic effects of adipose derived mesenchymal stem cells (AMSCs) for diabetes induced erectile dysfunction (DED). AMSCs were pretreated with normoxia (20% O2, N-AMSCs) or sub-lethal hypoxia (1% O2, H-AMSCs). The hypoxia exposure up-regulated the expression of several angiogenesis and neuroprotection related cytokines in AMSCs, including vascular endothelial growth factor (VEGF) and its receptor FIK-1, angiotensin (Ang-1), basic fibroblast growth factor (bFGF), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), stromal derived factor-1 (SDF-1) and its CXC chemokine receptor 4 (CXCR4). DED rats were induced via intraperitoneal injection of streptozotocin (60 mg/kg) and were randomly divided into three groups—Saline group: intracavernous injection with phosphate buffer saline; N-AMSCs group: N-AMSCs injection; H-AMSCs group: H-AMSCs injection. Ten rats without any treatment were used as normal control. Four weeks after injection, the mean arterial pressure (MAP) and intracavernosal pressure (ICP) were measured. The contents of endothelial, smooth muscle, dorsal nerve in cavernoursal tissue were assessed. Compared with N-AMSCs and saline, intracavernosum injection of H-AMSCs significantly raised ICP and ICP/MAP (p<0.05). Immunofluorescent staining analysis demonstrated that improved erectile function by MSCs was significantly associated with increased expression of endothelial markers (CD31 and vWF) (p<0.01) and smooth muscle markers (α-SMA) (p<0.01). Meanwhile, the expression of nNOS was also significantly higher in rats receiving H-AMSCs injection than those receiving N-AMSCs or saline injection. The results suggested that hypoxic preconditioning of MSCs was an effective approach to enhance their therapeutic effect for DED, which may be due to their augmented angiogenesis and neuroprotection.

70 citations


Journal ArticleDOI
TL;DR: The results suggest that TiO2 NPs could alter the neurobehavioral performance of adult Wistar rats and promotes alterations in hepatic tissues and the results provide strong evidence that the TiO1 NPs can induce the liver pathological changes of rats.
Abstract: Titanium dioxide nanoparticles (TiO2 NPs) have a wide range of applications in many fields (paint, industry, medicine, additives in food colorants, and nutritional products). Over the past decade research, TiO2 NPs have been focused on the potential toxic effects of these useful materials. In the present study, we investigated the effects of subacute exposure to TiO2 NPs on emotional behavior in adult Wistar rats, the biochemical parameters, and the histology of organs. Animals were injected intraperitoneally (ip) with TiO2 NPs (20 mg/kg body weight) every 2 days for 20 days. The elevated plus-maze test showed that subacute TiO2 NPs treatment increased significantly the anxious index (AI) compared to control group. The toxicological parameters were assessed 24 h and 14 days after the last injection of TiO2 NPs. Subacute exposure to nanoparticles increased the AST/ALT enzyme ratio and LDH activity. However, the blood cell count remained unchanged, except the platelet count increase. Histological examination showed a little inflammation overall. Moreover, our results provide strong evidence that the TiO2 NPs can induce the liver pathological changes of rats. The intraperitoneal injection of TiO2 NPs increased the accumulation of titanium in the liver, lung, and the brain. The results suggest that TiO2 NPs could alter the neurobehavioral performance of adult Wistar rats and promotes alterations in hepatic tissues.

67 citations


Journal ArticleDOI
TL;DR: The data clearly demonstrate that curcumin protects kidney from gentamicin-induced AKI via the amelioration of oxidative stress and apoptosis of renal tubular cells, thus providing hope for the ametrotective effects of gentamicIn-induced nephrotoxicity.
Abstract: Background: Gentamicin-induced nephrotoxicity is one of the most common causes of acute kidney injury (AKI). The phenotypic alterations that contribute to acute kidney injury include inflammatory response and oxidative stress. Curcumin has a wide range biological functions, especially as an antioxidant. This study was designed to evaluate the renoprotective effects of curcumin treatment in gentamicin-induced AKI. Methods: Gentamicin-induced AKI was established in female Sprague–Dawley rats. Rats were treated with curcumin (100 mg/kg body mass) by intragastric administration, once daily, followed with an intraperitoneal injection of gentamicin sulfate solution at a dose of 80 mg/kg body mass for 8 consecutive days. At days 3 and 8, the rats were sacrificed, and the kidneys and blood samples were collected for further analysis. Results: The animals treated with gentamicin showed marked deterioration of renal function, together with higher levels of neutrophil gelatinase-associated lipocalin (NGAL) and kidne...

66 citations


Journal ArticleDOI
TL;DR: Although NAC cannot compensate the above parameters to the control level, it considerably improves follicular survival and development and also the structure and function of transplanted ovaries, through reducing oxidative stress and apoptosis.
Abstract: The effect of N-acetylcysteine (NAC) on mouse ovary heterotopic autotransplantation was investigated. Mice (age 4–5 weeks) were divided into the following groups: control; autograft plus NAC (150 mg/kg daily intraperitoneal injection) and autograft plus saline ( n = 6 per group). Groups were treated from 1 day before until 7 days after transplantation. After 28 days, ovary compartments were estimated stereologically. Plasma malondialdehyde, progesterone, oestradiol concentrations and the percentage of apoptotic follicles were measured to evaluate the rate of oxidative stress and ovarian graft function. The mean total volume of ovary, cortex and the number of follicles was significantly higher (all P P P P P

66 citations


Journal ArticleDOI
01 Aug 2015-Shock
TL;DR: The results suggest that methane protects the liver against I/R injury through antiapoptotic, antioxidative, and anti-inflammatory actions.
Abstract: Hepatic ischemia/reperfusion (I/R) injury, which occurs in various diseases, introduces severe tissue damage and liver dysfunction. However, no promising therapies for such a significant condition currently exist. Methane has been suggested to exert a protective effect against intestinal I/R injury. In this study, we introduced methane to treat hepatic I/R injury to show its promising protective effect. Also, intraperitoneal injection with methane-rich saline, which could have potential clinical applications, was applied as a new method. Partial liver warm ischemia was applied in Sprague-Dawley rats for 60 min followed by succedent reperfusion. In the test for effective dosage, methane-rich saline was administrated intraperitoneally to the rats at doses of 1, 5, 20, or 40 mL/kg at onset of reperfusion. In the test for protective effect, rats received methane-rich saline intraperitoneally at a dose of 10 mL/kg before the initiation of reperfusion. We found that methane-rich saline significantly decreased serum alanine aminotransferase, aspartate aminotransferase activity, and the occurrence of necrosis. Moreover, methane-rich saline reduced the amount of caspase-3 and the number of apoptotic cells. In addition, methane-rich saline increased the level of superoxide dismutase and decreased the level of malondialdehyde and 8-hydroxyguanosine. Furthermore, research indicated that methane-rich saline markedly decreased gene expression and content of tumor necrosis factor-α and interleukin-6. Also, reduced CD68-positive cells showed decreased inflammatory cells in the liver. Our results suggest that methane protects the liver against I/R injury through antiapoptotic, antioxidative, and anti-inflammatory actions.

59 citations


Journal ArticleDOI
TL;DR: In this article, the effects of methimazolemazole (MMI) induced hypothyroidism on postnatal development were investigated in Wistar rats, and the results showed that the treatment with GM-CSF could reverse the depressing and stimulating effects of MMI on these markers except for cerebellar AchE where its enhancement was non-significant (P>0.05) at tested PND.

54 citations


Journal ArticleDOI
Yan Shen1, Zhi-Jun Zhang1, Ming-Di Zhu1, Bao-Chun Jiang1, Tian Yang1, Yong-Jing Gao1 
TL;DR: Data provide the first evidence that induction of HO-1 attenuates vincristine-induced neuropathic pain via inhibition of glia-mediated neuroinflammation in the spinal cord.

54 citations


Journal ArticleDOI
TL;DR: Intratumoral injection of mAbs recognizing CD137/PD-1/CTLA-4/CD19 can eradicate established tumors and reverse a Th2 response with tumor-associated CD19 cells to Th1 immunity, whereas a combination lacking anti-CD19 is less effective.
Abstract: Purpose: Immunomodulatory mAbs can treat cancer, but cures are rare except for small tumors. Our objective was to explore whether the therapeutic window increases by combining mAbs with different modes of action and injecting them into tumors. Experimental Design: Combinations of mAbs to CD137/PD-1/CTLA-4 or CD137/PD-1/CTLA-4/CD19 were administrated intratumorally to mice with syngeneic tumors (B16 and SW1 melanoma, TC1 lung carcinoma), including tumors with a mean surface of approximately 80 mm 2 . Survival and tumor growth were assessed. Immunologic responses were evaluated using flow cytometry and qRT-PCR. Results: More than 50% of tumor-bearing mice had complete regression and long-term survival after tumor injection with mAbs recognizing CD137/PD-1/CTLA-4/CD19 with similar responses in three models. Intratumoral injection was more efficacious than intraperitoneal injection in causing rejection also of untreated tumors in the same mice. The three-mAb combination could also induce regression, but was less efficacious. There were few side effects, and therapy-resistant tumors were not observed. Transplanted tumor cells rapidly caused a Th2 response with increased CD19 cells. Successful therapy shifted this response to the Th1 phenotype with decreased CD19 cells and increased numbers of long-term memory CD8 effector cells and T cells making IFNγ and TNFα. Conclusions: Intratumoral injection of mAbs recognizing CD137/PD-1/CTLA-4/CD19 can eradicate established tumors and reverse a Th2 response with tumor-associated CD19 cells to Th1 immunity, whereas a combination lacking anti-CD19 is less effective. There are several human cancers for which a similar approach may provide clinical benefit. Clin Cancer Res; 21(5); 1127–38. ©2014 AACR . See related commentary by Dronca and Dong, p. 944

Journal ArticleDOI
TL;DR: The results suggest that transplantation of HUMSCs by tail vein injection represents a minimally invasive and effective treatment method for ovarian injury and fertility was restored and their offspring developed normally in some transplanted rats.
Abstract: Ovarian injury because of chemotherapy can decrease the levels of sexual hormones and potentia generandi of patients, thereby greatly reducing quality of life. The goal of this study was to investigate which transplantation method for human umbilical cord mesenchymal stem cells (HUMSCs) can recover ovarian function that has been damaged by chemotherapy. A rat model of ovarian injury was established using an intraperitoneal injection of cyclophosphamide. Membrane-labelled HUMSCs were subsequently injected directly into ovary tissue or tail vein. The distribution of fluorescently labelled HUMSCs, estrous cycle, sexual hormone levels, and potentia generandi of treated and control rats were then examined. HUMSCs injected into the ovary only distributed to the ovary and uterus, while HUMSCs injected via tail vein were detected in the ovary, uterus, kidney, liver and lung. The estrous cycle, levels of sex hormones and potentia generandi of the treated rats were also recovered to a certain degree. Moreover, in some transplanted rats, fertility was restored and their offspring developed normally. While ovary injection could recover ovarian function faster, both methods produced similar results in the later stages of observation. Therefore, our results suggest that transplantation of HUMSCs by tail vein injection represents a minimally invasive and effective treatment method for ovarian injury.

Journal ArticleDOI
TL;DR: A single intraperitoneal injection of UCBC-derived mononuclear cells 6 h after an ischemic insult was associated with a transient reduction in numbers of apoptosis and oxidative stress marker-positive cells, but it did not induce long-term morphological or functional protection.
Abstract: This study aimed to investigate whether the administration of mononuclear cells derived from human umbilical cord blood cells (UCBCs) could ameliorate hypoxic-ischemic brain injury in a neonatal rat model. The left carotid arteries of 7-day-old rats were ligated, and the rats were then exposed to 8% oxygen for 60 min. Mononuclear cells derived from UCBCs using the Ficoll-Hypaque technique were injected intraperitoneally 6 h after the insult (1.0 × 10(7) cells). Twenty-four hours after the insult, the number of cells positive for the oxidative stress markers 4-hydroxy-2-nonenal and nitrotyrosine, in the dentate gyrus of the hippocampus in the UCBC-treated group, decreased by 36 and 42%, respectively, compared with those in the control group. In addition, the number of cells positive for the apoptosis markers active caspase-3 and apoptosis-inducing factor decreased by 53 and 58%, respectively. The number of activated microglia (ED1-positive cells) was 51% lower in the UCBC group compared with the control group. In a gait analysis performed 2 weeks after the insult, there were no significant differences among the sham-operated, control and UCBC groups. An active avoidance test using a shuttle box the following week also revealed no significant differences among the groups. Neither the volumes of the hippocampi, corpus callosum and cortices nor the numbers of neurons in the hippocampus were different between the UCBC and control groups. In summary, a single intraperitoneal injection of UCBC-derived mononuclear cells 6 h after an ischemic insult was associated with a transient reduction in numbers of apoptosis and oxidative stress marker-positive cells, but it did not induce long-term morphological or functional protection. Repeated administration or a combination treatment may be required to achieve sustained protection.

Journal ArticleDOI
Na Cui1, Hao Wang1, Yun Long1, Longxiang Su1, Dawei Liu1 
TL;DR: In this article, the authors determined the mechanism of sepsis-induced vascular hyperpermeability and the beneficial effect of glucocorticoid in protecting vascular endothelium.
Abstract: The aim of this study is to determine the mechanism of sepsis-induced vascular hyperpermeability and the beneficial effect of glucocorticoid in protecting vascular endothelium. Male Sprague-Dawley rats were given either a bolus intraperitoneal injection of a nonlethal dose of LPS (Escherichia coli 055:B5, 10 mg/kg, Sigma) or vehicle (pyrogen-free water). Animals of treatment groups were also given either dexamethasone (4 mg/kg, 30 min prior to LPS injection) or the matrix metalloproteinases (MMPs) inhibitor doxycycline (4 mg/kg, 30 min after LPS injection). Both activities and protein levels of MMP-2 and MMP-9 were significantly upregulated in aortic homogenates from LPS-treated rats, associated with decreased ZO-1 and syndecan-1 protein contents. Both dexamethasone and doxycycline could significantly inhibit MMPs activity and reserve the expressions of ZO-1 and syndecan-1. The inhibition of MMPs by dexamethasone was significantly lower than that by doxycycline, while the rescue of syndecan-1 expression from LPS-induced endotoxemic rat thoracic aorta was significantly higher in the dexamethasone-treated compared to the doxycycline-treated . In conclusion, activation of MMPs plays important role in regulating ZO-1 and syndecan-1 protein levels in LPS mediated endothelial perturbation. Both dexamethasone and doxycycline inhibit activation of MMPs that may contribute to the rescue of ZO-1 and syndecan-1 expression.

Journal ArticleDOI
TL;DR: Observations indicate that CSA-13 may synergistically interact with antibacterial factors that are naturally present at mucosal surfaces and it maintains its antibacterial activity in the infected abdominal cavity.
Abstract: Ceragenins constitute a novel family of cationic antibiotics characterized by a broad spectrum of antimicrobial activities, which have mostly been assessed in vitro. Using a polarized human lung epithelial cell culture system, we evaluated the antibacterial activities of the ceragenin CSA-13 against two strains of Pseudomonas aeruginosa (PAO1 and Xen5). Additionally, the biodistribution and bactericidal activity of a CSA-13-IRDye 800CW derivate were assessed using an animal model of peritoneal infection after PAO1 challenge. In cell culture, CSA-13 bactericidal activities against PAO1 and Xen5 were higher than the activities of the human cathelicidin peptide LL-37. Increased CSA-13 activity was observed in polarized human lung epithelial cell cultures subjected to butyric acid treatment, which is known to increase endogenous LL-37 production. Eight hours after intravenous or intraperitoneal injection, the greatest CSA-13-IRDye 800CW accumulation was observed in mouse liver and kidneys. CSA-13-IRDye 800CW administration resulted in decreased bacterial outgrowth from abdominal fluid collected from animals subjected to intraperitoneal PAO1 infection. These observations indicate that CSA-13 may synergistically interact with antibacterial factors that are naturally present at mucosal surfaces and it maintains its antibacterial activity in the infected abdominal cavity. Cationic lipids such as CSA-13 represent excellent candidates for the development of new antibacterial compounds.

Journal ArticleDOI
TL;DR: The intraperitoneal injection of 15 mg/kg of K2Cr2O7, that is able to induce hepatotoxicity, was unable to induce histological and oxidative damage in other target organs, and curcumin was safe.
Abstract: Hexavalent chromium [Cr(VI)] compounds are extremely toxic and carcinogenic. Despite the vast quantity of reports about Cr(VI) toxicity, the information regarding its effects when it is intraperitoneally (i.p.) administered is still limited. In contrast, it has been shown that curcumin prevents hepatotoxicity induced by a single intraperitoneal injection of 15 mg/kg body weight (b.w.) of potassium dichromate (K2Cr2O7). This study aims to evaluate oxidative stress markers, the activity of antioxidant enzymes, and the potential histological injury in brain, heart, lung, kidney, spleen, pancreas, stomach, and intestine from rats treated with a hepatotoxic dose of K2Cr2O7 (15 mg/kg b.w.), and the effect of curcumin pretreatment. Rats were divided into four groups: control, curcumin, K2Cr2O7, and curcumin+K2Cr2O7. At the end of the treatment, plasma and ascites fluid were collected and target organs were dissected out for biochemical and histological analysis. K2Cr2O7 induced hepatotoxicity but failed to induce in all the other studied organs either oxidative or histological injury, since levels of malondialdehyde (MDA), glutathione (GSH), and the activity of superoxide dismutase (SOD), catalase (CAT), and related GSH enzymes were unchanged. As expected, curcumin was safe. Lack of K2Cr2O7-induced toxicity in those target organs could be due to the following: (1) route of administration, (2) absorption through the portal circulation, (3) lower dose than needed, (4) short time of exposure, or (5) repeated doses are required to produce damage. Thus, the intraperitoneal injection of 15 mg/kg of K2Cr2O7, that is able to induce hepatotoxicity, was unable to induce histological and oxidative damage in other target organs.

Journal ArticleDOI
TL;DR: It is unveiled that isolie was able to provoke HepG2, Huh-7, and H22 hepatocellular carcinoma (HCC) cell apoptosis and was bioavailable in the blood of mice and exhibited no detectable toxic effects on tumor-bearing mice.
Abstract: Isoliensinine (isolie) is an alkaloid produced by the edible plant Nelumbo nucifera. Here, we unveiled that isolie was able to provoke HepG2, Huh-7, and H22 hepatocellular carcinoma (HCC) cell apoptosis. Isolie decreased NF-κB activity and constitutive phosphorylation of NF-κB p65 subunit at Ser536 in HCC cells. Overexpression of p65 Ser536 phosphorylation mimics abrogated isolie-mediated HCC cell apoptosis. Furthermore, intraperitoneal injection of isolie inhibited the growth of Huh-7 xenografts in nude mice. Additionally, isolie given by both intraperitoneal injection and gavage diminished the proliferation of transplanted H22 cells in Kunming mice. Reduced tumor growth in vivo was associated with inhibited p65 phosphorylation at Ser536 and declined NF-κB activity in tumor tissues. Finally, we revealed that isolie was bioavailable in the blood of mice and exhibited no detectable toxic effects on tumor-bearing mice. Our data provided strong evidence for the anti-HCC effect of isolie.

Journal ArticleDOI
TL;DR: It is demonstrated that the administration route influences the effects of drugs and cell distribution, and a preclinical study may need to be performed using the optimal administration route used in a clinical setting.
Abstract: Background and purpose Most therapeutic agents are administered intravenously (IV) in clinical settings and intraperitoneally (IP) in preclinical studies with neonatal rodents; however, it remains unclear whether intraperitoneal (IP) injection is truly an acceptable alternative for intravenous (IV) injection in preclinical studies. The objective of our study is to clarify the differences in the therapeutic effects of drugs and in the distribution of infused cells after an IP or IV injection in animals with brain injury. Methods Dexamethasone or MK-801, an N-methyl- d -aspartate receptor antagonist was administered either IP or IV in a mouse model of neonatal hypoxic–ischemic encephalopathy. Green fluorescent protein-expressing mesenchymal stem cells (MSCs) or mononuclear cells (MNCs) were injected IP or IV in the mouse model. Two hours and 24 h after the administration of the cells, we investigated the cell distributions by immunohistochemical staining. We also investigated distribution of IV administered MNCs labeled with 2-[ 18 F]fluoro-2-deoxy- d -glucose in a juvenile primate, a macaque with stroke 1 h after the administration. Results IP and IV administration of dexamethasone attenuated the brain injury to a similar degree. IP administration of MK-801 attenuated brain injury, whereas IV administration of MK-801 did not. The IV group showed a significantly greater number of infused cells in the lungs and brains in the MSC cohort and in the spleen, liver, and lung in the MNC cohort compared to the IP group. In the macaque, MNCs were detected in the spleen and liver in large amounts, but not in the brain and lungs. Conclusions This study demonstrated that the administration route influences the effects of drugs and cell distribution. Therefore, a preclinical study may need to be performed using the optimal administration route used in a clinical setting.

Journal ArticleDOI
TL;DR: The results of this study reinforce the fact that GNPs can lead to oxidative damage, which is responsible for DNA damage and alterations in energy metabolism, and reinforce the idea that oxidative stress and energy metabolism after the acute and long-term administration of gold nanoparticles in rats are evaluated.
Abstract: This study evaluated the parameters of oxidative stress and energy metabolism after the acute and long-term administration of gold nanoparticles (GNPs, 10 and 30 nm in diameter) in different organs of rats. Adult male Wistar rats received a single intraperitoneal injection or repeated injections (once daily for 28 days) of saline solution, GNPs-10 or GNPs-30. Twenty-four hours after the last administration, the animals were killed, and the liver, kidney, and heart were isolated for biochemical analysis. We demonstrated that acute administration of GNPs-30 increased the TBARS levels, and that GNPs-10 increased the carbonyl protein levels. The long-term administration of GNPs-10 increased the TBARS levels, and the carbonyl protein levels were increased by GNPs-30. Acute administration of GNPs-10 and GNPs-30 increased SOD activity. Long-term administration of GNPs-30 increased SOD activity. Acute administration of GNPs-10 decreased the activity of CAT, whereas long-term administration of GNP-10 and GNP-30 altered CAT activity randomly. Our results also demonstrated that acute GNPs-30 administration decreased energy metabolism, especially in the liver and heart. Long-term GNPs-10 administration increased energy metabolism in the liver and decreased energy metabolism in the kidney and heart, whereas long-term GNPs-30 administration increased energy metabolism in the heart. The results of our study are consistent with other studies conducted in our research group and reinforce the fact that GNPs can lead to oxidative damage, which is responsible for DNA damage and alterations in energy metabolism.

Journal ArticleDOI
TL;DR: On days 40 and 60, α‐MSH reduced scar area and improved the organization of the collagen fibres indicating that it may direct the healing into a more‐regenerative/less‐scarring pathway.
Abstract: Skin wound healing is a complex process involving many types of cells and molecules and often results in scar tissue formation in adult mammals. However, scarless healing occurs in foetal skin and minimal scars may occur after cutaneous healing in the adult with reduced inflammation. Alpha-melanocyte-stimulating hormone (α-MSH) is widely distributed within the central nervous system and in other body regions, such as the skin, and has strong anti-inflammatory activity. The aim in the present experiments was to learn whether intraperitoneal (i.p) injection of α-MSH just before skin wounds antagonize inflammation and improves skin wound healing in adult mice. C57BL/6 young adult mice received an i.p. injection of 1 mg/kg of α-MSH and, 30 min later, two circular through-and-through holes (6.5 mm diameter) were made in their dorsal skin under anaesthesia. Control mice were wounded after vehicle injection. The wound healing process was analysed macroscopically and microscopically at 3, 7, 40 and 60 days. Skin samples were fixed in formalin, embedded in paraffin, sectioned at 5 μm, stained with H&E or toluidine blue for cell analysis or Gomori's trichrome for extracellular matrix (ECM) analysis. Other samples were fixed in DMSO+methanol, embedded in paraplast and incubated with anti-CD45, antismooth muscle actin, anticollagen-I and anticollagen-III for immunofluorescence analysis. Alpha-MSH significantly reduced the number of leucocytes, mast cells and fibroblasts at 3 and 7 days after injury. On days 40 and 60, α-MSH reduced scar area and improved the organization of the collagen fibres indicating that it may direct the healing into a more-regenerative/less-scarring pathway.

Journal ArticleDOI
TL;DR: AuNPs improved many of the oxidative stress parameters (SOD, GPx and, CAT), plasma antioxidant capacity (ORAC) and lipid profile relative to the other parameters, and showed the apparent reversibility of the pancreatic B cell in group IV which may reflect the regenerative capacity of AuNPs.
Abstract: Background: Gold nanoparticles (AuNPs) have a wide range of applications in various fields. This study provides an understanding of the modulatory effects of AuNPs on an antioxidant system in male Wistar diabetic rats with autism spectrum disorder (ASD). Normal littermates fed by control mothers were injected with citrate buffer alone and served as normal, untreated controls controlin this study. Diabetes mellitus (DM) was induced by administering a single intraperitoneal injection of streptozotocin (STZ) (100 mg/kg) to the pups of (ND) diabetic group, which had been fasted overnight. Autistic pups from mothers that had received a single intraperitoneal injection of 600 mg/kg sodium valproate on day 12.5 after conception were randomly divided into 2 groups (n 2 7/group) as follow; administering single intraperitoneal injection of streptozotocin (STZ) ( (100 mg/kg) to the overnight fasted autistic pups of (AD) autistic diabetic group. The treatment was started on the 5th day after STZ injection with the same dose as in group II and it was considered as 1st day of treatment with gold nanoparticles for 7 days to each rat of (group IV) treated autistic diabetic group(TAD) at a dosage of 2.5 mg/kg. b. wt. Results: At this dose of administration AuNPs, the activities of hepatic superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase were greater in group TAD compared with the control group (P 0.05) in the liver of autistic diabetic AuNPs -supplemented rats, whereas reduced glutathione was markedly higher than in control rats, especially after administration of AuNPs. Moreover, the kidney functions in addition to the fat profile scoring supported the protective potential of that dose of AuNPs. The beta cells revealed euchromatic nuclei with no evidence of separation of nuclear membrane. Conclusions: Our results showed that AuNPs improved many of the oxidative stress parameters (SOD, GPx and, CAT), plasma antioxidant capacity (ORAC) and lipid profile relative to the other parameters. In addition to the apparent reversibility of the pancreatic B cell in group IV which may reflect the regenerative capacity of AuNPs.

Journal ArticleDOI
TL;DR: It is suggested that the early beneficial effect of curcumin intervention in dexamethasone-treated mice is the sensitization of insulin signaling, involving the stimulation of FGF21 production, a known insulin sensitizer.
Abstract: BACKGROUND Long-term dietary curcumin (>12 wk) improves metabolic homeostasis in obese mice by sensitizing insulin signaling and reducing hepatic gluconeogenesis. Whether these occur only secondary to its chronic anti-inflammatory and antioxidative functions is unknown. OBJECTIVE In this study, we assessed the insulin sensitization effect of short-term curcumin gavage in a rapid dexamethasone-induced insulin resistance mouse model, in which the chronic anti-inflammatory function is eliminated. METHODS Six-week-old male C57BL/6 mice received an intraperitoneal injection of dexamethasone (100 mg/kg body weight) or phosphate-buffered saline every day for 5 d, with or without simultaneous curcumin gavage (500 mg/kg body weight). On day 7, insulin tolerance tests were performed. After a booster dexamethasone injection and curcumin gavage on day 8, blood glucose and insulin concentrations were measured. Liver tissues were collected on day 10 for quantitative polymerase chain reaction and Western blotting to assess gluconeogenic gene expression, insulin signaling, and the expression of fibroblast growth factor 21 (FGF21). Primary hepatocytes from separate, untreated C57BL/6 mice were used for testing the in vitro effect of curcumin treatment. RESULTS Dexamethasone injection impaired insulin tolerance (P < 0.05) and elevated ambient plasma insulin concentrations by ~2.7-fold (P < 0.01). Concomitant curcumin administration improved insulin sensitivity and reduced hepatic gluconeogenic gene expression. The insulin sensitization effect of curcumin was demonstrated by increased stimulation of S473 phosphorylation of protein kinase B (P < 0.01) in the dexamethasone-treated mouse liver, as well as the repression of glucose production in primary hepatocytes (P < 0.001). Finally, curcumin gavage increased FGF21 expression by 2.1-fold in the mouse liver (P < 0.05) and curcumin treatment increased FGF21 expression in primary hepatocytes. CONCLUSION These observations suggest that the early beneficial effect of curcumin intervention in dexamethasone-treated mice is the sensitization of insulin signaling, involving the stimulation of FGF21 production, a known insulin sensitizer.

Journal ArticleDOI
TL;DR: Results showed that the immunoreactive staining and mRNA expression of the dopamine transporter and tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis, in the substantia nigra, were significantly increased in mice pretreated with 800 mg/kg of the polysaccharide compared with those in MPTP-treated mice.

Journal ArticleDOI
TL;DR: H2S plays an anti-inflammatory role in SAP in vivo and was significantly increased after NaHS administration compared with the SAP group, and the degree of upregulation was associated with the NaHS dosage.
Abstract: AIM: To study the effect of hydrogen sulfide (H2S) on severe acute pancreatitis (SAP) in a rat model. METHODS: Sprague-Dawley (SD) rats were administered an intraperitoneal injection of saline containing 20% L-Arg (250 mg/100 g) hourly for over 2 h to induce SAP. The rats were treated with DL-propargylglycine (PAG, 50 mg/kg) or different dosages of NaHS (5 mg/kg, 10 mg/kg, 20 mg/kg or 100 mg/kg). PAG or NaHS was administered 1 h before induction of pancreatitis. Rats were sacrificed 24 h after the last L-Arg injection. Blood and pancreas tissues were collected. RESULTS: The H2S and cystathionine-γ-lyase mRNA levels in SAP rats were significantly lower than those in the control group, and treatment with PAG further reduced the H2S level. Nevertheless, H2S was significantly increased after NaHS administration compared with the SAP group, and the degree of upregulation was associated with the NaHS dosage. NaHS reduced the levels of plasma amylase, interleukin-6 and myeloperoxidase in pancreatic tissue. NaHS suppressed the degradation of IκBα and the activity of nuclear factor-κB, as well as the phosphorylation of PI3K/AKT. CONCLUSION: H2S plays an anti-inflammatory role in SAP in vivo.

Journal ArticleDOI
TL;DR: IL‐10 played a direct role in reducing proinflammatory cytokine production by macrophages treated with intravenous Ig + LPS, and insight is provided into a novel mechanism by which intravenously Ig may dampen down inflammatory responses in patients with autoimmune or autoinflammatory diseases.
Abstract: Intravenous Ig is used to treat autoimmune or autoinflammatory disorders, but the mechanism by which it exerts its immunosuppressive activity is not understood completely. To examine the impact of intravenous Ig on macrophages, we compared cytokine production by LPS-activated macrophages in the presence and absence of intravenous Ig. Intravenous Ig treatment induced robust production of IL-10 in response to LPS, relative to LPS stimulation alone, and reduced production of proinflammatory cytokines. This anti-inflammatory, intravenous Ig-induced activation was sustained for 24 h but could only be induced if intravenous Ig were provided within 1 h of LPS stimulation. Intravenous Ig activation led to enhanced and prolonged activation of MAPKs, Erk1/2, p38, and Erk5, and inhibition of each reduced intravenous Ig-induced IL-10 production and suppression of IL-12/23p40. IL-10 production occurred rapidly in response to intravenous Ig + LPS and was sufficient to reduce proinflammatory IL-12/23p40 production in response to LPS. IL-10 induction and reduced IL-12/23p40 production were transcriptionally regulated. IL-10 played a direct role in reducing proinflammatory cytokine production by macrophages treated with intravenous Ig + LPS, as macrophages from mice deficient in the IL-10R β chain or in IL-10 were compromised in their ability to reduce proinflammatory cytokine production. Finally, intraperitoneal injection of intravenous Ig or intravenous Ig + LPS into mice activated macrophages to produce high levels of IL-10 during subsequent or concurrent LPS challenge, respectively. These findings identify IL-10 as a key anti-inflammatory mediator produced by intravenous Ig-treated macrophages and provide insight into a novel mechanism by which intravenous Ig may dampen down inflammatory responses in patients with autoimmune or autoinflammatory diseases.

Journal ArticleDOI
TL;DR: Cerium oxide nanoparticles attenuate the systemic inflammatory response associated with peritonitis, suggesting potential use as a novel therapeutic agent for the treatment of severe intra-abdominal infection.
Abstract: OBJECTIVES Peritonitis is a life-threatening disease that is associated with high mortality. The purpose of this study was to determine if cerium oxide nanoparticles can be used to diminish intra-abdominal infection-induced mortality and systemic inflammatory response syndrome in the laboratory rat. DESIGN Randomized, controlled animal study and cell culture study. SETTING University research laboratory. SUBJECTS Male Sprague-Dawley rats aged 12 weeks, RAW 246.7 macrophage cell line. INTERVENTIONS Intra-abdominal infection or peritonitis was induced by intraperitoneal injection of cecal material (600 mg/kg in 5% sterile dextrose water at a dosage of 5 mL/kg) obtained from healthy donors. Rats in control and peritonitis groups received 200 μL of sterile deionized water IV via the tail vein, whereas rats in cerium oxide-only group and peritonitis+cerium oxide group received cerium oxide nanoparticles (0.5 mg/kg) IV at the time of polymicrobial injection. Survival rate was monitored for 14 days, while in other experiments, animals were killed at 3 and 18 hours after induction of peritonitis for biochemical analysis. MEASUREMENTS AND MAIN RESULTS Administration of a single dose (0.5 mg/kg) of cerium oxide nanoparticles IV to rats in the peritonitis group significantly improved survival rates and functioned to restore core body temperature toward baseline. Treatment-induced increases in animal survivability were associated with reduced systemic and hepatic oxidative stress, diminished serum cytokines, and chemokine levels. Changes in serum inflammatory markers with treatment were accompanied by decreased monocyte and lymphocyte extravasation into the peritoneal cavity along with decreased infiltration of macrophages into liver. In the heart, treatment diminished extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase-Stat-3 signaling and attenuated endothelial expression of P-selectin and vascular cell adhesion molecule-1. CONCLUSIONS Cerium oxide nanoparticles attenuate the systemic inflammatory response associated with peritonitis, suggesting potential use as a novel therapeutic agent for the treatment of severe intra-abdominal infection.

Journal ArticleDOI
TL;DR: The results demonstrate that the chemical functionalization of fullerene had a significant impact on its translocation and biodistribution properties and could therefore be used to reduce the toxicity of C60 and improve its biocompatibility, which would be beneficial for biomedical applications.
Abstract: Functionalization is believed to have a considerable impact on the biodistribution of fullerene in vivo. However, a direct comparison of differently functionalized fullerenes is required to prove the hypothesis. The purpose of this study was to investigate the influences of surface modification on the biodistribution of fullerene following its exposure via several routs of administration. 13C skeleton-labeled fullerene C60 (13C-C60) was functionalized with carboxyl groups (13C-C60-COOH) or hydroxyl groups (13C-C60-OH). Male ICR mice (~25 g) were exposed to a single dose of 400 μg of 13C-C60-COOH or 13C-C60-OH in 200 μL of aqueous 0.9% NaCl solution by three different exposure pathways, including tail vein injection, gavage and intraperitoneal exposure. Tissue samples, including blood, heart, liver, spleen, stomach, kidneys, lungs, brain, large intestine, small intestine, muscle, bone and skin were subsequently collected, dissected, homogenized, lyophilized, and analyzed by isotope ratio mass spectrometry. The liver, bone, muscle and skin were found to be the major target organs for C60-COOH and C60-OH after their intravenous injection, whereas unmodified C60 was mainly found in the liver, spleen and lung. The total uptakes in liver and spleen followed the order: C60 > > C60-COOH > C60-OH. The distribution rate over 24 h followed the order: C60 > C60-OH > C60-COOH. C60-COOH and C60-OH were both cleared from the body at 7 d post exposure. C60-COOH was absorbed in the gastrointestinal tract following gavage exposure and distributed into the heart, liver, spleen, stomach, lungs, intestine and bone tissues. The translocation of C60-OH was more widespread than that of C60-COOH after intraperitoneal injection. The surface modification of fullerene C60 led to a decreased in its accumulation level and distribution rate, as well as altering its target organs. These results therefore demonstrate that the chemical functionalization of fullerene had a significant impact on its translocation and biodistribution properties. Further surface modifications could therefore be used to reduce the toxicity of C60 and improve its biocompatibility, which would be beneficial for biomedical applications.

Journal ArticleDOI
TL;DR: Intraperitoneal injection of saline alone produced animals with large lungs, and alterations in total alveoli number and size and pressure-volume characteristics, and the loss of lung elastic recoil in βAPN-treated animals is due to an alteration in tissue forces.
Abstract: We administered β-amino-propionitrile (βAPN) intraperitoneally to rats from birth to 4 wk of age and allowed the animals to recover for a further 4 wk. Saline-injected rats of similar age and 8-wk-old non-injected rats served as comparison groups. We had previously shown that injections of βAPN during the first 4 wk of life produces animals with large lungs that have too few and too large alveoli, and that have lost elastic recoil. In this experiment, abnormalities persisted in the 4-wk recovery period so that at 8 wk of age, similar differences were noted. We have also been able to show that the loss of lung elastic recoil in βAPN-treated animals is due to an alteration in tissue forces. Intraperitoneal injection of saline alone produced animals with large lungs, and alterations in total alveoli number and size and pressure-volume characteristics. The last 3 findings were not as severe as in the βAPN-treated animals. Damage to the lung in the early postnatal period may be irreversible, leading to structu...

Journal ArticleDOI
TL;DR: Evidence that wound healing is slower in control rats compared to the treatment groups is provided and the findings suggest that wounds healing occurs faster with red laser compared to blue and green lasers.
Abstract: Background and objective: Many studies have demonstrated that low-level laser therapy (LLLT) can improve wound healing in non-diabetic and diabetic animals. We compared the effects of red, green, and blue lasers in terms of accelerating oral wound healing in diabetic rats. Material and methods: Diabetes was successfully induced in 32 male Wistar rats using intraperitoneal injection of Streptozotocin (150 mg/kg). After intraperitoneal injection of the anesthetic agent, a full-thickness oral wound (10 mm × 2 mm) was created aseptically with a scalpel on hard palate of the diabetic rats. The study was performed using red (630 nm), green (532 nm), and blue (425 nm) lasers and a control group. We used an energy density of 2 J/cm2 and a treatment schedule of 3 times/week for 10 days. The area of wounds was measured and recorded on a chart for all rats. On the 10th day, the samples were then sacrificed and a full-thickness sample of wound area was prepared for pathological study. Results: We observed a significant difference (p

Journal ArticleDOI
TL;DR: Although PMN antiserum reduces both neutrophil number and activity, it does not diminish sensitivity to bacterially induced delivery or meaningfully alter the expression of inflammatory markers in the mouse model, suggesting preterm birth and inflammation in this model are not likely to depend on neutrophils function.