scispace - formally typeset
Search or ask a question
Topic

Introduction to the mathematics of general relativity

About: Introduction to the mathematics of general relativity is a research topic. Over the lifetime, 2583 publications have been published within this topic receiving 73295 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the full set of equations governing the structure and the evolution of self-gravitating spherically symmetric dissipative fluids with anisotropic stresses is written down in terms of five scalar quantities obtained from the orthogonal splitting of the Riemann tensor, in the context of general relativity.
Abstract: The full set of equations governing the structure and the evolution of self-gravitating spherically symmetric dissipative fluids with anisotropic stresses is written down in terms of five scalar quantities obtained from the orthogonal splitting of the Riemann tensor, in the context of general relativity. It is shown that these scalars are directly related to fundamental properties of the fluid distribution, such as energy density, energy density inhomogeneity, local anisotropy of pressure, dissipative flux, and the active gravitational mass. It is also shown that in the static case, all possible solutions to Einstein equations may be expressed explicitly through these scalars. Some solutions are exhibited to illustrate this point.

231 citations

Journal ArticleDOI
TL;DR: In this article, the energy of a quasi-static system in the form of an integral which has to be extended only over the portion of space actually occupied by matter or radiation is derived.
Abstract: The primary purpose of this article is to obtain from the general relativity form of the energy-momentum principle certain new consequences which are needed for later work that the author has in mind. In addition, it is the intention to give at the same time a somewhat comprehensive and coherent treatment of the principle and its consequences, which it is hoped will increase the confidence and facility of physicists in the use of this important part of the general theory of relativity. In carrying out the investigation, it has seemed desirable for English readers, to take Eddington's "Mathematical Theory of Relativity" as a starting point, and this has incidentally led to a new form of deduction for certain consequences of the energy-momentum principle that were already known. After presenting the energy-momentum principle in the form discovered by Einstein and showing its application to the case of the conservation of energy in an isolated system, an important expression is derived which gives the total densities of energy and momentum in the form of a divergence. This expression is equivalent to one previously obtained by Einstein but on account of the starting point adopted is derived and expressed in terms of the quantities gμν and gαμν instead of the gμν and gαμν. Following this, the limiting values at large distances from an isolated material system are obtained for the quantities gαβ∂L/∂gγαβ and gα4∂L/∂gγα4. These values, which have considerable use, have not previously received explicit expression. This is followed by a deduction from our present starting point of Einstein's famous relation U=m between the energy and gravitational producing mass of an isolated system. An important expression is then obtained which gives the energy of a quasi-static isolated system in the form of an integral which has to be extended only over the portion of space actually occupied by matter or radiation. This expression has not previously received a satisfactory derivation. The result is used to obtain an expression for the energy of a spherical distribution of a perfect fluid, and it is then shown that this expression, in the case of a sphere of ordinary material, approaches in a sufficiently weak field to the classical expression for energy including the potential gravitational energy. This result is not only intrinsically useful, but also shows for a particular case that a higher order of approximation to the general relativity value for total energy is obtained by including the classical gravitational energy than by going at once to flat space-time as is often done. Finally, a general consideration is given to the problem of determining the conditions imposed on those changes from one static state to another which could occur in a non-isolated system forming part of a larger static system, without changing the distribution of matter and radiation outside the boundary and without contravening the energy-momentum principle as applied to the system as a whole.

228 citations

Journal ArticleDOI
TL;DR: A singularity-free solution for a static charged fluid sphere in general relativity was obtained in this article, where the solution satisfies physical conditions inside the sphere and satisfies physical properties inside the fluid sphere.
Abstract: A singularity-free solution was obtained for a static charged fluid sphere in general relativity The solution satisfies physical conditions inside the sphere

226 citations


Network Information
Related Topics (5)
General relativity
29K papers, 810.8K citations
89% related
Gravitation
29.3K papers, 821.5K citations
86% related
Dark energy
20K papers, 750.8K citations
85% related
Quantum field theory
24.6K papers, 749.9K citations
85% related
Black hole
40.9K papers, 1.5M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232
20226
20191
20185
201734
201662