scispace - formally typeset
Search or ask a question
Topic

Introgression

About: Introgression is a research topic. Over the lifetime, 5725 publications have been published within this topic receiving 187352 citations. The topic is also known as: introgressive hybridization.


Papers
More filters
Journal ArticleDOI
TL;DR: Nonindigenous species can bring about a form of extinction of native flora and fauna by hybridization and introgression either through purposeful introduction by humans or through habitat modification, bringing previously isolated species into contact.
Abstract: ▪ Abstract Nonindigenous species can bring about a form of extinction of native flora and fauna by hybridization and introgression either through purposeful introduction by humans or through habitat modification, bringing previously isolated species into contact. These phenomena can be especially problematic for rare species coming into contact with more abundant ones. Increased use of molecular techniques focuses attention on the extent of this underappreciated problem that is not always apparent from morphological observations alone. Some degree of gene flow is a normal, evolutionarily constructive process, and all constellations of genes and genotypes cannot be preserved. However, hybridization with or without introgression may, nevertheless, threaten a rare species' existence.

2,190 citations

Journal ArticleDOI
TL;DR: A perspective on the context and evolutionary significance of hybridization during speciation is offered, highlighting issues of current interest and debate and suggesting that the Dobzhansky–Muller model of hybrid incompatibilities requires a broader interpretation.
Abstract: Hybridization has many and varied impacts on the process of speciation. Hybridization may slow or reverse differentiation by allowing gene flow and recombination. It may accelerate speciation via adaptive introgression or cause near-instantaneous speciation by allopolyploidization. It may have multiple effects at different stages and in different spatial contexts within a single speciation event. We offer a perspective on the context and evolutionary significance of hybridization during speciation, highlighting issues of current interest and debate. In secondary contact zones, it is uncertain if barriers to gene flow will be strengthened or broken down due to recombination and gene flow. Theory and empirical evidence suggest the latter is more likely, except within and around strongly selected genomic regions. Hybridization may contribute to speciation through the formation of new hybrid taxa, whereas introgression of a few loci may promote adaptive divergence and so facilitate speciation. Gene regulatory networks, epigenetic effects and the evolution of selfish genetic material in the genome suggest that the Dobzhansky-Muller model of hybrid incompatibilities requires a broader interpretation. Finally, although the incidence of reinforcement remains uncertain, this and other interactions in areas of sympatry may have knock-on effects on speciation both within and outside regions of hybridization.

1,715 citations

Journal ArticleDOI
TL;DR: Experimental, theoretical, and empirical studies of homoploid hybrid speciation suggest that it is feasible, although evolutionary conditions are stringent, and hybridization may be important as a stimulus for the genetic or chromosomal reorganization envisioned in founder effect and saltational models of speciation.
Abstract: The origin of new homoploid species via hybridization is theoretically difficult because it requires the development of reproductive isolation in sympatry. Nonetheless, this mode is often and carelessly used by botanists to account for the formation of species that are morphologically intermediate with respect to related congeners. Here, I review experimental, theoretical, and empirical studies of homoploid hybrid speciation to evaluate the feasibility, tempo, and frequency of this mode. Theoretical models, simulation studies, and experimental syntheses of stabilized hybrid neospecies indicate that it is feasible, although evolutionary conditions are stringent. Hybrid speciation appears to be promoted by rapid chromosomal evolution and the availability of a suitable hybrid habitat. A selfing breeding system may enhance establishment of hybrid species, but this advantage appears to be counterbalanced by lower rates of natural hybridization among selfing taxa. Simulation studies and crossing experiments also suggest that hybrid speciation can be rapid—a prediction confirmed by the congruence observed between the genomes of early generation hybrids and ancient hybrid species. The frequency of this mode is less clear. Only eight natural examples in plants have been rigorously documented, suggesting that it may be rare. However, hybridization rates are highest in small or peripheral populations, and hybridization may be important as a stimulus for the genetic or chromosomal reorganization envisioned in founder effect and saltational models of speciation.

1,206 citations

Journal ArticleDOI
01 Oct 1999-Heredity
TL;DR: Credence is lent to the view that hybridization may provide the raw material for rapid adaptation and provide a simple explanation for niche divergence and phenotypic novelty often associated with hybrid lineages.
Abstract: The production of extreme or 'transgressive' phenotypes in segregating hybrid populations has been speculated to contribute to niche divergence of hybrid lineages. Here, we assess the frequency of transgressive segregation in hybrid populations, describe its genetic basis and discuss the factors that best predict its occurrence. From a survey of 171 studies that report phenotypic variation in segregating hybrid populations, we show that transgression is the rule rather than the exception. In fact, 155 of the 171 studies (91%) report at least one transgressive trait, and 44% of 1229 traits examined were transgressive. Transgression occurred most frequently in intraspecific crosses involving inbred, domesticated plant populations, and least frequently in interspecific crosses between outbred, wild animal species. Quantitative genetic studies of plant hybrids consistently point to the action of complementary genes as the primary cause of transgression, although overdominance and epistasis also contribute. Complementary genes appear to be common for most traits, with the possible exception of those with a history of disruptive selection. These results lend credence to the view that hybridization may provide the raw material for rapid adaptation and provide a simple explanation for niche divergence and phenotypic novelty often associated with hybrid lineages.

1,057 citations

Journal ArticleDOI
01 Nov 1995-Genetics
TL;DR: A novel population consisting of 50 introgression lines originating from a cross between the green-fruited species Lycopersicon pennellii and the cultivated tomato (cv M82) is presented, which provides complete coverage of the genome and a set of lines nearly isogenic to M82.
Abstract: Methodologies for mapping of genes underlying quantitative traits have advanced considerably but have not been accompanied by a parallel development of new population structures. We present a novel population consisting of 50 introgression lines (ILs) originating from a cross between the green-fruited species Lycopersicon pennellii and the cultivated tomato (cv M82). Each of the lines contains a single homozygous restriction fragment length polymorphism-defined L. pennellii chromosome segment, and together the lines provide complete coverage of the genome and a set of lines nearly isogenic to M82. A field trial of the ILs and their hybrids revealed at least 23 quantitative trait loci (QTL) for total soluble solids content and 18 for fruit mass; these estimates are twice as high as previously reported estimates based on traditional mapping populations. For finer mapping of a QTL affecting fruit mass, the introgressed segment was recombined into smaller fragments that allowed the identification of three linked loci. At least 16 QTL for plant weight, 22 for percentage green fruit weight, 11 for total yield and 14 for total soluble solids yield were identified. Gene action for fruit and plant characteristics was mainly additive, while overdominance (or pseudo-overdominance) of wild species introgressions was detected for yield.

1,036 citations


Network Information
Related Topics (5)
Genetic diversity
42.8K papers, 873.4K citations
92% related
Genetic variability
16.2K papers, 467.7K citations
90% related
Quantitative trait locus
24K papers, 998.7K citations
90% related
Genetic variation
27.8K papers, 1M citations
89% related
Genetic marker
13.5K papers, 512.5K citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023367
2022905
2021376
2020350
2019347
2018336