scispace - formally typeset
Search or ask a question
Topic

Inverse

About: Inverse is a research topic. Over the lifetime, 10562 publications have been published within this topic receiving 234640 citations.


Papers
More filters
Book
01 Mar 1981
TL;DR: In this paper, the authors present a classification of MADM methods by data type and propose a ranking method based on the degree of similarity of the MADM method to the original MADM algorithm.
Abstract: I. Introduction.- II. Multiple Attribute Decision Making - An Overview.- 2.1 Basics and Concepts.- 2.2 Classifications of MADM Methods.- 2.2.1 Classification by Information.- 2.2.2 Classification by Solution Aimed At.- 2.2.3 Classification by Data Type.- 2.3 Description of MADM Methods.- Method (1): DOMINANCE.- Method (2): MAXIMIN.- Method (3): MAXIMAX.- Method (4): CONJUNCTIVE METHOD.- Method (5): DISJUNCTIVE METHOD.- Method (6): LEXICOGRAPHIC METHOD.- Method (7): LEXICOGRAPHIC SEMIORDER METHOD.- Method (8): ELIMINATION BY ASPECTS (EBA).- Method (9): LINEAR ASSIGNMENT METHOD (LAM).- Method (10): SIMPLE ADDITIVE WEIGHTING METHOD (SAW).- Method (11): ELECTRE (Elimination et Choice Translating Reality).- Method (12): TOPSIS (Technique for Order Preference by Similarity to Ideal Solution).- Method (13): WEIGHTED PRODUCT METHOD.- Method (14): DISTANCE FROM TARGET METHOD.- III. Fuzzy Sets and their Operations.- 3.1 Introduction.- 3.2 Basics of Fuzzy Sets.- 3.2.1 Definition of a Fuzzy Set.- 3.2.2 Basic Concepts of Fuzzy Sets.- 3.2.2.1 Complement of a Fuzzy Set.- 3.2.2.2 Support of a Fuzzy Set.- 3.2.2.3 ?-cut of a Fuzzy Set.- 3.2.2.4 Convexity of a Fuzzy Set.- 3.2.2.5 Normality of a Fuzzy Set.- 3.2.2.6 Cardinality of a Fuzzy Set.- 3.2.2.7 The mth Power of a Fuzzy Set.- 3.3 Set-Theoretic Operations with Fuzzy Sets.- 3.3.1 No Compensation Operators.- 3.3.1.1 The Min Operator.- 3.3.2 Compensation-Min Operators.- 3.3.2.1 Algebraic Product.- 3.3.2.2 Bounded Product.- 3.3.2.3 Hamacher's Min Operator.- 3.3.2.4 Yager's Min Operator.- 3.3.2.5 Dubois and Prade's Min Operator.- 3.3.3 Full Compensation Operators.- 3.3.3.1 The Max Operator.- 3.3.4 Compensation-Max Operators.- 3.3.4.1 Algebraic Sum.- 3.3.4.2 Bounded Sum.- 3.3.4.3 Hamacher's Max Operator.- 3.3.4.4 Yager's Max Operator.- 3.3.4.5 Dubois and Prade's Max Operator.- 3.3.5 General Compensation Operators.- 3.3.5.1 Zimmermann and Zysno's ? Operator.- 3.3.6 Selecting Appropriate Operators.- 3.4 The Extension Principle and Fuzzy Arithmetics.- 3.4.1 The Extension Principle.- 3.4.2 Fuzzy Arithmetics.- 3.4.2.1 Fuzzy Number.- 3.4.2.2 Addition of Fuzzy Numbers.- 3.4.2.3 Subtraction of Fuzzy Numbers.- 3.4.2.4 Multiplication of Fuzzy Numbers.- 3.4.2.5 Division of Fuzzy Numbers.- 3.4.2.6 Fuzzy Max and Fuzzy Min.- 3.4.3 Special Fuzzy Numbers.- 3.4.3.1 L-R Fuzzy Number.- 3.4.3.2 Triangular (or Trapezoidal) Fuzzy Number.- 3.4.3.3 Proof of Formulas.- 3.4.3.3.1 The Image of Fuzzy Number N.- 3.4.3.3.2 The Inverse of Fuzzy Number N.- 3.4.3.3.3 Addition and Subtraction.- 3.4.3.3.4 Multiplication and Division.- 3.5 Conclusions.- IV. Fuzzy Ranking Methods.- 4.1 Introduction.- 4.2 Ranking Using Degree of Optimality.- 4.2.1 Baas and Kwakernaak's Approach.- 4.2.2 Watson et al.'s Approach.- 4.2.3 Baldwin and Guild's Approach.- 4.3 Ranking Using Hamming Distance.- 4.3.1 Yager's Approach.- 4.3.2 Kerre's Approach.- 4.3.3 Nakamura's Approach.- 4.3.4 Kolodziejczyk's Approach.- 4.4 Ranking Using ?-Cuts.- 4.4.1 Adamo's Approach.- 4.4.2 Buckley and Chanas' Approach.- 4.4.3 Mabuchi's Approach.- 4.5 Ranking Using Comparison Function.- 4.5.1 Dubois and Prade's Approach.- 4.5.2 Tsukamoto et al.'s Approach.- 4.5.3 Delgado et al.'s Approach.- 4.6 Ranking Using Fuzzy Mean and Spread.- 4.6.1 Lee and Li's Approach.- 4.7 Ranking Using Proportion to The Ideal.- 4.7.1 McCahone's Approach.- 4.8 Ranking Using Left and Right Scores.- 4.8.1 Jain's Approach.- 4.8.2 Chen's Approach.- 4.8.3 Chen and Hwang's Approach.- 4.9 Ranking with Centroid Index.- 4.9.1 Yager's Centroid Index.- 4.9.2 Murakami et al.'s Approach.- 4.10 Ranking Using Area Measurement.- 4.10.1 Yager's Approach.- 4.11 Linguistic Ranking Methods.- 4.11.1 Efstathiou and Tong's Approach.- 4.11.2 Tong and Bonissone's Approach.- V. Fuzzy Multiple Attribute Decision Making Methods.- 5.1 Introduction.- 5.2 Fuzzy Simple Additive Weighting Methods.- 5.2.1 Baas and Kwakernaak's Approach.- 5.2.2 Kwakernaak's Approach.- 5.2.3 Dubois and Prade's Approach.- 5.2.4 Cheng and McInnis's Approach.- 5.2.5 Bonissone's Approach.- 5.3 Analytic Hierarchical Process (AHP) Methods.- 5.3.1 Saaty's AHP Approach.- 5.3.2 Laarhoven and Pedrycz's Approach.- 5.3.3 Buckley's Approach.- 5.4 Fuzzy Conjunctive/Disjunctive Method.- 5.4.1 Dubois, Prade, and Testemale's Approach.- 5.5 Heuristic MAUF Approach.- 5.6 Negi's Approach.- 5.7 Fuzzy Outranking Methods.- 5.7.1 Roy's Approach.- 5.7.2 Siskos et al.'s Approach.- 5.7.3 Brans et al.'s Approach.- 5.7.4 Takeda's Approach.- 5.8 Maximin Methods.- 5.8.1 Gellman and Zadeh's Approach.- 5.8.2 Yager's Approach.- 5.9 A New Approach to Fuzzy MADM Problems.- 5.9.1 Converting Linguistic Terms to Fuzzy Numbers.- 5.9.2 Converting Fuzzy Numbers to Crisp Scores.- 5.9.3 The Algorithm.- VI. Concluding Remarks.- 6.1 MADM Problems and Fuzzy Sets.- 6.2 On Existing MADM Solution Methods.- 6.2.1 Classical Methods for MADM Problems.- 6.2.2 Fuzzy Methods for MADM Problems.- 6.2.2.1 Fuzzy Ranking Methods.- 6.2.2.2 Fuzzy MADM Methods.- 6.3 Critiques of the Existing Fuzzy Methods.- 6.3.1 Size of Problem.- 6.3.2 Fuzzy vs. Crisp Data.- 6.4 A New Approach to Fuzzy MADM Problem Solving.- 6.4.1 Semantic Modeling of Linguistic Terms.- 6.4.2 Fuzzy Scoring System.- 6.4.3 The Solution.- 6.4.4 The Advantages of the New Approach.- 6.5 Other Multiple Criteria Decision Making Methods.- 6.5.1 Multiple Objective Decision Making Methods.- 6.5.2 Methods of Group Decision Making under Multiple Criteria.- 6.5.2.1 Social Choice Theory.- 6.5.2.2 Experts Judgement/Group Participation.- 6.5.2.3 Game Theory.- 6.6 On Future Studies.- 6.6.1 Semantics of Linguistic Terms.- 6.6.2 Fuzzy Ranking Methods.- 6.6.3 Fuzzy MADM Methods.- 6.6.4 MADM Expert Decision Support Systems.- VII. Bibliography.

8,629 citations

Book
01 Jan 1992
TL;DR: Inverse Medium Problem (IMP) as discussed by the authors is a generalization of the Helmholtz Equation for direct acoustical obstacle scattering in an Inhomogeneous Medium (IMM).
Abstract: Introduction.- The Helmholtz Equation.- Direct Acoustic Obstacle Scattering.- III-Posed Problems.- Inverse Acoustic Obstacle Scattering.- The Maxwell Equations.- Inverse Electromagnetic Obstacle Scattering.- Acoustic Waves in an Inhomogeneous Medium.- Electromagnetic Waves in an Inhomogeneous Medium.- The Inverse Medium Problem.-References.- Index

5,126 citations

Journal ArticleDOI
01 Jul 1955
TL;DR: A generalization of the inverse of a non-singular matrix is described in this paper as the unique solution of a certain set of equations, which is used here for solving linear matrix equations, and for finding an expression for the principal idempotent elements of a matrix.
Abstract: This paper describes a generalization of the inverse of a non-singular matrix, as the unique solution of a certain set of equations. This generalized inverse exists for any (possibly rectangular) matrix whatsoever with complex elements. It is used here for solving linear matrix equations, and among other applications for finding an expression for the principal idempotent elements of a matrix. Also a new type of spectral decomposition is given.

3,769 citations

Book
13 Dec 2002
TL;DR: In this article, a generalized Shift-Invariant Systems in L2(Rd) is proposed for Gabor Frames in L 2(Z),L 2(0,L),CL.
Abstract: Frames in Finite-dimensional Inner Product Spaces.- Infinite-dimensional Vector Spaces and Sequences.- Bases.- Bases and their Limitations.- Frames in Hilbert Spaces.- Tight Frames and Dual Frame Pairs.- Frames versus Riesz Bases.- Selected Topics in Frame Theory.- Frames of Translates.- Shift-Invariant Systems in l2(R).- Gabor Frames in L2(R).- Gabor Frames and Duality.- Selected Topics on Gabor Frames.- Gabor Frames in â 2(Z),L2(0,L),CL.- General Wavelet Frames in L2(R).- Dyadic Wavelet Frames for L2(R).- Frame Multiresolution Analysis.- Wavelet Frames via Extension Principles.- Selected Topics on Wavelet Frames.- Generalized Shift-Invariant Systems in L2(Rd).- Frames on Locally Compact Abelian Groups.- Perturbation of Frames.- Approximation of the Inverse Frame Operator.- Expansions in Banach Spaces. Appendix.

2,769 citations

Book
07 Feb 2012
TL;DR: In this paper, the Fokker-Planck Equation for N Variables (FPE) was extended to N = 1 variable and N = 2 variables, where N is the number of variables in the system.
Abstract: 1. Introduction.- 1.1 Brownian Motion.- 1.1.1 Deterministic Differential Equation.- 1.1.2 Stochastic Differential Equation.- 1.1.3 Equation of Motion for the Distribution Function.- 1.2 Fokker-Planck Equation.- 1.2.1 Fokker-Planck Equation for One Variable.- 1.2.2 Fokker-Planck Equation for N Variables.- 1.2.3 How Does a Fokker-Planck Equation Arise?.- 1.2.4 Purpose of the Fokker-Planck Equation.- 1.2.5 Solutions of the Fokker-Planck Equation.- 1.2.6 Kramers and Smoluchowski Equations.- 1.2.7 Generalizations of the Fokker-Planck Equation.- 1.3 Boltzmann Equation.- 1.4 Master Equation.- 2. Probability Theory.- 2.1 Random Variable and Probability Density.- 2.2 Characteristic Function and Cumulants.- 2.3 Generalization to Several Random Variables.- 2.3.1 Conditional Probability Density.- 2.3.2 Cross Correlation.- 2.3.3 Gaussian Distribution.- 2.4 Time-Dependent Random Variables.- 2.4.1 Classification of Stochastic Processes.- 2.4.2 Chapman-Kolmogorov Equation.- 2.4.3 Wiener-Khintchine Theorem.- 2.5 Several Time-Dependent Random Variables.- 3. Langevin Equations.- 3.1 Langevin Equation for Brownian Motion.- 3.1.1 Mean-Squared Displacement.- 3.1.2 Three-Dimensional Case.- 3.1.3 Calculation of the Stationary Velocity Distribution Function.- 3.2 Ornstein-Uhlenbeck Process.- 3.2.1 Calculation of Moments.- 3.2.2 Correlation Function.- 3.2.3 Solution by Fourier Transformation.- 3.3 Nonlinear Langevin Equation, One Variable.- 3.3.1 Example.- 3.3.2 Kramers-Moyal Expansion Coefficients.- 3.3.3 Ito's and Stratonovich's Definitions.- 3.4 Nonlinear Langevin Equations, Several Variables.- 3.4.1 Determination of the Langevin Equation from Drift and Diffusion Coefficients.- 3.4.2 Transformation of Variables.- 3.4.3 How to Obtain Drift and Diffusion Coefficients for Systems.- 3.5 Markov Property.- 3.6 Solutions of the Langevin Equation by Computer Simulation.- 4. Fokker-Planck Equation.- 4.1 Kramers-Moyal Forward Expansion.- 4.1.1 Formal Solution.- 4.2 Kramers-Moyal Backward Expansion.- 4.2.1 Formal Solution.- 4.2.2 Equivalence of the Solutions of the Forward and Backward Equations.- 4.3 Pawula Theorem.- 4.4 Fokker-Planck Equation for One Variable.- 4.4.1 Transition Probability Density for Small Times.- 4.4.2 Path Integral Solutions.- 4.5 Generation and Recombination Processes.- 4.6 Application of Truncated Kramers-Moyal Expansions.- 4.7 Fokker-Planck Equation for N Variables.- 4.7.1 Probability Current.- 4.7.2 Joint Probability Distribution.- 4.7.3 Transition Probability Density for Small Times.- 4.8 Examples for Fokker-Planck Equations with Several Variables.- 4.8.1 Three-Dimensional Brownian Motion without Position Variable.- 4.8.2 One-Dimensional Brownian Motion in a Potential.- 4.8.3 Three-Dimensional Brownian Motion in an External Force.- 4.8.4 Brownian Motion of Two Interacting Particles in an External Potential.- 4.9 Transformation of Variables.- 4.10 Covariant Form of the Fokker-Planck Equation.- 5. Fokker-Planck Equation for One Variable Methods of Solution.- 5.1 Normalization.- 5.2 Stationary Solution.- 5.3 Ornstein-Uhlenbeck Process.- 5.4 Eigenfunction Expansion.- 5.5 Examples.- 5.5.1 Parabolic Potential.- 5.5.2 Inverted Parabolic Potential.- 5.5.3 Infinite Square Well for the Schrudinger Potential.- 5.5.4 V-Shaped Potential for the Fokker-Planck Equation.- 5.6 Jump Conditions.- 5.7 A Bistable Model Potential.- 5.8 Eigenfunctions and Eigenvalues of Inverted Potentials.- 5.9 Approximate and Numerical Methods for Determining Eigenvalues and Eigenfunctions.- 5.9.1 Variational Method.- 5.9.2 Numerical Integration.- 5.9.3 Expansion into a Complete Set.- 5.10 Diffusion Over a Barrier.- 5.10.1 Kramers' Escape Rate.- 5.10.2 Bistable and Metastable Potential.- 6. Fokker-Planck Equation for Several Variables Methods of Solution.- 6.1 Approach of the Solutions to a Limit Solution.- 6.2 Expansion into a Biorthogonal Set.- 6.3 Transformation of the Fokker-Planck Operator, Eigenfunction Expansions.- 6.4 Detailed Balance.- 6.5 Ornstein-Uhlenbeck Process.- 6.6 Further Methods for Solving the Fokker-Planck Equation.- 6.6.1 Transformation of Variables.- 6.6.2 Variational Method.- 6.6.3 Reduction to an Hermitian Problem.- 6.6.4 Numerical Integration.- 6.6.5 Expansion into Complete Sets.- 6.6.6 Matrix Continued-Fraction Method.- 6.6.7 WKB Method.- 7. Linear Response and Correlation Functions.- 7.1 Linear Response Function.- 7.2 Correlation Functions.- 7.3 Susceptibility.- 8. Reduction of the Number of Variables.- 8.1 First-Passage Time Problems.- 8.2 Drift and Diffusion Coefficients Independent of Some Variables.- 8.2.1 Time Integrals of Markovian Variables.- 8.3 Adiabatic Elimination of Fast Variables.- 8.3.1 Linear Process with Respect to the Fast Variable.- 8.3.2 Connection to the Nakajima-Zwanzig Projector Formalism.- 9. Solutions of Tridiagonal Recurrence Relations, Application to Ordinary and Partial Differential Equations.- 9.1 Applications and Forms of Tridiagonal Recurrence Relations.- 9.1.1 Scalar Recurrence Relation.- 9.1.2 Vector Recurrence Relation.- 9.2 Solutions of Scalar Recurrence Relations.- 9.2.1 Stationary Solution.- 9.2.2 Initial Value Problem.- 9.2.3 Eigenvalue Problem.- 9.3 Solutions of Vector Recurrence Relations.- 9.3.1 Initial Value Problem.- 9.3.2 Eigenvalue Problem.- 9.4 Ordinary and Partial Differential Equations with Multiplicative Harmonic Time-Dependent Parameters.- 9.4.1 Ordinary Differential Equations.- 9.4.2 Partial Differential Equations.- 9.5 Methods for Calculating Continued Fractions.- 9.5.1 Ordinary Continued Fractions.- 9.5.2 Matrix Continued Fractions.- 10. Solutions of the Kramers Equation.- 10.1 Forms of the Kramers Equation.- 10.1.1 Normalization of Variables.- 10.1.2 Reversible and Irreversible Operators.- 10.1.3 Transformation of the Operators.- 10.1.4 Expansion into Hermite Functions.- 10.2 Solutions for a Linear Force.- 10.2.1 Transition Probability.- 10.2.2 Eigenvalues and Eigenfunctions.- 10.3 Matrix Continued-Fraction Solutions of the Kramers Equation.- 10.3.1 Initial Value Problem.- 10.3.2 Eigenvalue Problem.- 10.4 Inverse Friction Expansion.- 10.4.1 Inverse Friction Expansion for K0(t), G0,0(t) and L0(t).- 10.4.2 Determination of Eigenvalues and Eigenvectors.- 10.4.3 Expansion for the Green's Function Gn,m(t).- 10.4.4 Position-Dependent Friction.- 11. Brownian Motion in Periodic Potentials.- 11.1 Applications.- 11.1.1 Pendulum.- 11.1.2 Superionic Conductor.- 11.1.3 Josephson Tunneling Junction.- 11.1.4 Rotation of Dipoles in a Constant Field.- 11.1.5 Phase-Locked Loop.- 11.1.6 Connection to the Sine-Gordon Equation.- 11.2 Normalization of the Langevin and Fokker-Planck Equations.- 11.3 High-Friction Limit.- 11.3.1 Stationary Solution.- 11.3.2 Time-Dependent Solution.- 11.4 Low-Friction Limit.- 11.4.1 Transformation to E and x Variables.- 11.4.2 'Ansatz' for the Stationary Distribution Functions.- 11.4.3 x-Independent Functions.- 11.4.4 x-Dependent Functions.- 11.4.5 Corrected x-Independent Functions and Mobility.- 11.5 Stationary Solutions for Arbitrary Friction.- 11.5.1 Periodicity of the Stationary Distribution Function.- 11.5.2 Matrix Continued-Fraction Method.- 11.5.3 Calculation of the Stationary Distribution Function.- 11.5.4 Alternative Matrix Continued Fraction for the Cosine Potential.- 11.6 Bistability between Running and Locked Solution.- 11.6.1 Solutions Without Noise.- 11.6.2 Solutions With Noise.- 11.6.3 Low-Friction Mobility With Noise.- 11.7 Instationary Solutions.- 11.7.1 Diffusion Constant.- 11.7.2 Transition Probability for Large Times.- 11.8 Susceptibilities.- 11.8.1 Zero-Friction Limit.- 11.9 Eigenvalues and Eigenfunctions.- 11.9.1 Eigenvalues and Eigenfunctions in the Low-Friction Limit.- 12. Statistical Properties of Laser Light.- 12.1 Semiclassical Laser Equations.- 12.1.1 Equations Without Noise.- 12.1.2 Langevin Equation.- 12.1.3 Laser Fokker-Planck Equation.- 12.2 Stationary Solution and Its Expectation Values.- 12.3 Expansion in Eigenmodes.- 12.4 Expansion into a Complete Set Solution by Matrix Continued Fractions.- 12.4.1 Determination of Eigenvalues.- 12.5 Transient Solution.- 12.5.1 Eigenfunction Method.- 12.5.2 Expansion into a Complete Set.- 12.5.3 Solution for Large Pump Parameters.- 12.6 Photoelectron Counting Distribution.- 12.6.1 Counting Distribution for Short Intervals.- 12.6.2 Expectation Values for Arbitrary Intervals.- Appendices.- A1 Stochastic Differential Equations with Colored Gaussian Noise.- A2 Boltzmann Equation with BGK and SW Collision Operators.- A3 Evaluation of a Matrix Continued Fraction for the Harmonic Oscillator.- A4 Damped Quantum-Mechanical Harmonic Oscillator.- A5 Alternative Derivation of the Fokker-Planck Equation.- A6 Fluctuating Control Parameter.- S. Supplement to the Second Edition.- S.1 Solutions of the Fokker-Planck Equation by Computer Simulation (Sect. 3.6).- S.2 Kramers-Moyal Expansion (Sect. 4.6).- S.3 Example for the Covariant Form of the Fokker-Planck Equation (Sect. 4.10).- S.4 Connection to Supersymmetry and Exact Solutions of the One Variable Fokker-Planck Equation (Chap. 5).- S.5 Nondifferentiability of the Potential for the Weak Noise Expansion (Sects. 6.6 and 6.7).- S.6 Further Applications of Matrix Continued-Fractions (Chap. 9).- S.7 Brownian Motion in a Double-Well Potential (Chaps. 10 and 11).- S.8 Boundary Layer Theory (Sect. 11.4).- S.9 Calculation of Correlation Times (Sect. 7.12).- S.10 Colored Noise (Appendix A1).- S.11 Fokker-Planck Equation with a Non-Positive-Definite Diffusion Matrix and Fokker-Planck Equation with Additional Third-Order-Derivative Terms.- References.

2,582 citations


Network Information
Related Topics (5)
Matrix (mathematics)
105.5K papers, 1.9M citations
93% related
Differential equation
88K papers, 2M citations
90% related
Boundary value problem
145.3K papers, 2.7M citations
90% related
Nonlinear system
208.1K papers, 4M citations
90% related
Wavelet
78K papers, 1.3M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,833
20223,542
2021820
2020728
2019713
2018586