scispace - formally typeset
Search or ask a question
Topic

Iodine

About: Iodine is a research topic. Over the lifetime, 8936 publications have been published within this topic receiving 139981 citations. The topic is also known as: I & element 53.


Papers
More filters
Journal ArticleDOI
TL;DR: A proposed model in eight steps explains the new experimental results and gives a semi-quantitative explanation of the oxygen effect and allows simulations of the Bray-Liebhafsky oscillations at 25 degrees C.
Abstract: The kinetics of the iodine oxidation by hydrogen peroxide is a complicated function of the concentrations of iodine, hydrogen peroxide, perchloric acid and iodate. A proposed model in eight steps explains the new experimental results. It explains also the effect of the concentrations at the steady state of the hydrogen peroxide decomposition catalyzed by iodine and iodate. Without iodate added initially, the iodine oxidation by hydrogen peroxide is preceded by an induction period that depends on the oxygen concentration. A simple extension of the proposed model gives a semi-quantitative explanation of the oxygen effect and allows simulations of the Bray-Liebhafsky oscillations at 25 °C.

59 citations

Journal ArticleDOI
TL;DR: University hospitals in the United States are awash with seas of white coats, where doctors and students are readily identifiable, their name and clinical service clearly embroidered on their breast pockets.
Abstract: University hospitals in the United States are awash with seas of white coats. Doctors are readily identifiable, their name and clinical service clearly embroidered on their breast pockets. Students are also part of this white brigade, albeit in shorter coats. When asked why they persist with the white coat, long abandoned by their colleagues elsewhere in the world, their justification includes instant recognition by patient and public alike, ease of maintenance, and the white coat’s value as an integral part of the tradition and practice of medicine.

59 citations

Journal ArticleDOI
TL;DR: A greenhouse pot experiment was carried out to investigate the availability of iodide and iodate to soil-grown spinach (Spinacia oleracea L.) in relation to total iodine concentration in soil solution as discussed by the authors.
Abstract: A greenhouse pot experiment was carried out to investigate the availability of iodide and iodate to soil-grown spinach (Spinacia oleracea L.) in relation to total iodine concentration in soil solution. Four iodine concentrations (0, 0.5, 1, 2 mg kg−1) for iodide (I−) and iodate (IO 3 − ) were used. Results showed that the biomass productions of spinach were not significantly affected by the addition of iodate and iodide to the soil, and that iodine concentrations in spinach plants on the basis of fresh weights increased with increasing addition of iodine. Iodine concentrations in tissues were much greater for plants grown with iodate than with iodide. In contrast to the iodide treatments, in iodate treatment leaves accounted for a larger fraction of the total plant iodine. The soil-to-leaf transfer factors (TFleaf) for plants grown with iodate were about tenfold higher than those grown with iodide. Iodine concentrations in soil solution increased with increasing iodine additions to the soil irrespective of iodine species. However, total iodine in soil solution was generally higher for iodate treatments than iodide both in pots with and without spinach. According to these results, iodate can be considered as potential iodine fertilizer to increase iodine content in vegetables.

59 citations

Journal ArticleDOI
TL;DR: It is concluded that UVA-excited TiO2 in the presence of iodide produces reactive iodine intermediates during illumination that kill microbial cells and long-lived oxidized iodine products that kill after light has ended.
Abstract: Photocatalysis describes the excitation of titanium dioxide nanoparticles (a wide-band gap semiconductor) by UVA light to produce reactive oxygen species (ROS) that can destroy many organic molecules. This photocatalysis process is used for environmental remediation, while antimicrobial photocatalysis can kill many classes of microorganisms and can be used to sterilize water and surfaces and possibly to treat infections. Here we show that addition of the nontoxic inorganic salt potassium iodide to TiO2 (P25) excited by UVA potentiated the killing of Gram-positive bacteria, Gram-negative bacteria, and fungi by up to 6 logs. The microbial killing depended on the concentration of TiO2, the fluence of UVA light, and the concentration of KI (the best effect was at 100 mM). There was formation of long-lived antimicrobial species (probably hypoiodite and iodine) in the reaction mixture (detected by adding bacteria after light), but short-lived antibacterial reactive species (bacteria present during light) produced more killing. Fluorescent probes for ROS (hydroxyl radical and singlet oxygen) were quenched by iodide. Tri-iodide (which has a peak at 350 nm and a blue product with starch) was produced by TiO2-UVA-KI but was much reduced when methicillin-resistant Staphylococcus aureus (MRSA) cells were also present. The model tyrosine substrate N-acetyl tyrosine ethyl ester was iodinated in a light dose-dependent manner. We conclude that UVA-excited TiO2 in the presence of iodide produces reactive iodine intermediates during illumination that kill microbial cells and long-lived oxidized iodine products that kill after light has ended.

59 citations


Network Information
Related Topics (5)
Amino acid
124.9K papers, 4M citations
81% related
Reagent
60K papers, 1.2M citations
77% related
Cobalt
69.8K papers, 1.2M citations
77% related
Nucleic acid
53.2K papers, 1.2M citations
76% related
Thyroid
68.8K papers, 1.5M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023748
20221,361
2021155
2020154
2019158
2018186