scispace - formally typeset
Search or ask a question
Topic

Iodine

About: Iodine is a research topic. Over the lifetime, 8936 publications have been published within this topic receiving 139981 citations. The topic is also known as: I & element 53.


Papers
More filters
Journal ArticleDOI
TL;DR: It is postulated that lactoperoxidase generates hypoiodous acid and that the latter is the active intermediate in the various reactions involving iodide.

88 citations

Journal ArticleDOI
TL;DR: In this paper, a new method for determining iodate and total iodate in seawater is described, where iodate is directly measured by differential pulse polarography with a precision (1σ) of 2·5%.

88 citations

Journal ArticleDOI
TL;DR: Topical application of povidone iodine on the umbilical cord and normal intact skin of newborn infants resulted in significantly elevated plasma iodine levels and high iodine levels were also found in two neonates who had povids applied to denuded skin.

88 citations

Journal ArticleDOI
TL;DR: General qualities of aqueous iodine solutions are deduced, such as reactivity, stability, and analytical aspects, and major disinfection‐orientated properties such as microbicidal activity, irritation, and incorporation effects are estimated.
Abstract: Although they have been in use for nearly 170 years, the mode of action of iodine-based disinfectants is not yet clearly understood, as is manifested, for example, in diverging judgements about the relevance of the individual iodine species. Although studies based on calculated equilibrium concentrations in pure iodine solutions have already been done, there is a lack of knowledge about iodine solutions in the presence of additional iodide which would be of intrinsic importance for disinfection practice. Therefore, a re-calculation was undertaken considering variations of this parameter in the pH range 0-14. The presented calculations concern fresh iodine solutions not affected by disproportionation (iodate formation) and provide information about the equilibrium concentrations of the species I, I2, I3, I5-, I6(2-), HOI, O1-, HI2O-, IO2- and H2OI+. Additional iodide and the pH value have a very pronounced influence on the individual equilibrium concentrations (several powers of ten); hence, conditions can be indicated where the number of species of virtual importance is drastically reduced. In the most common case with iodine in the presence of additional iodide at pH 10. The stability problem (i.e. rate of iodate formation) arising at pH > 6 can be reduced to hypoiodous acid, as manifested in the simple rate law d[IO3]/dt = 0.25 [HOI]3/[H+] which allows an estimation of stability under weakly alkaline conditions. The results of this study allow us to deduce general qualities of aqueous iodine solutions, such as reactivity, stability, and analytical aspects, and to estimate major disinfection-orientated properties such as microbicidal activity, irritation, and incorporation effects. Though the calculations consider primarily preparations devoid of polymeric organic compounds capable of complexing iodine species, the results can be largely transferred to iodophoric preparations.

88 citations

Journal ArticleDOI
TL;DR: It is proposed that the most likely reaction scheme is the dissociative reduction of I(2) onto the metal oxide surface, followed by a second electron reduction of the resulting adsorbed iodine radical, and that empirical second-order behavior of the electron lifetime is most likely explained by electron trapping rather than by asecond-order recombination mechanism.
Abstract: We have used transient absorption spectroscopy to study the reaction between photogenerated electrons in a dye-free nanocrystalline titanium dioxide film and an iodine/iodide redox couple. Recombination kinetics was measured by recording the transient optical signal following band gap excitation by a UV laser pulse. In the presence of a methanol hole scavenger in the electrolyte, a long-lived (0.1−1 s) red/infrared absorbance is observed and assigned to photogenerated electrons forming Ti3+ species. In the presence of iodine and excess iodide in the electrolyte, the signal decays on a millisecond−microsecond time scale, assigned to reduction of the redox couple by photogenerated electrons in the TiO2. The electron lifetime decreases inversely with increasing iodine concentration, indicating that the back reaction is first order in [I2]. No evidence for I2- is observed, indicating that the reaction mechanism does not involve the formation of I2- as an intermediate. The shape of the kinetics evolves from mo...

87 citations


Network Information
Related Topics (5)
Amino acid
124.9K papers, 4M citations
81% related
Reagent
60K papers, 1.2M citations
77% related
Cobalt
69.8K papers, 1.2M citations
77% related
Nucleic acid
53.2K papers, 1.2M citations
76% related
Thyroid
68.8K papers, 1.5M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023748
20221,361
2021155
2020154
2019158
2018186