scispace - formally typeset
Search or ask a question
Topic

Ion beam deposition

About: Ion beam deposition is a research topic. Over the lifetime, 8925 publications have been published within this topic receiving 120093 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Ion beam deposition of insulating carbon thin films on room temperature substrates, considering transparency, index of refraction, insulating capacity, glass scratching ability, etc. as discussed by the authors.
Abstract: Ion beam deposition of insulating carbon thin films on room temperature substrates, considering transparency, index of refraction, insulating capacity, glass scratching ability, etc

1,046 citations

Book
01 Jan 1982

770 citations

Book
01 Jan 1989
TL;DR: Brown et al. as discussed by the authors presented a computer simulation of the ion-beam extraction system using an off-resonance Microwave Ion Source (MIMO-IBS).
Abstract: PrefaceList of Contributors1 Introduction (Ian Brown)2 Plasma Physics (Ian Brown)21 Introduction22 Basic Plasma Parameters221 Particle Density222 Fractional Ionization223 Particle Temperature224 Particle Energy and Velocity225 Collisions23 The Plasma Sheath231 Debye Length232 Charge Neutrality233 Plasma Oscillations24 Magnetic Field Effects241 Gyro Orbits242 Gyro Frequencies243 Magnetic Confinement244 Magnetic and Plasma Pressure25 Ionization251 Electron Impact Ionization252 Multiple Ionization253 Photoionization254 Ion Impact Ionization255 Negative Ions256 Field Ionization3 Elementary Ion Sources (Ian Brown)31 Introduction32 Terminology33 The Quintessential Ion Source34 Ion Beam Formation35 Ion Beam Parameters36 An Example37 Conclusion4 Computer Simulation of Extraction (Peter Spdtke)41 Introduction42 Positive Ion Sources421 Filament Driven Cusp Sources422 Duoplasmatrons and Duopigatrons423 Vacuum Arc Ion Sources424 Laser Ion Sources425 ECR Ion Sources426 Penning Ion Sources43 Negative Ion and Electron Sources431 Hot Cathode Electron Sources432 Plasma Electron Sources433 H- Sources44 Conclusion5 Ion Extraction (Ralph Hollinger)51 Introduction52 Fundamentals of Ion Beam Formation in the Extraction System53 Beam Quality54 Sophisticated Treatment of Ion Beam Formation in the Extraction System55 Multi-Aperture Extraction Systems56 Starting Conditions6 Beam Transport (Peter Spdtke and Ralph Hollinger)61 Introduction611 Drift612 Extraction System and Acceleration Gap613 Low Energy Beam Line62 Current Effects63 Space-Charge Compensation631 Residual Gas Collisions632 Sputtering633 Preserving Space Charge Compensation634 Influence of Space Charge Compensation64 A LEBT System for the Future Proton Linac at GSI641 Compound System642 Pentode or Two-Gap System643 Triode System and DCPost-A cceleration644 Discussion7 High Current Gaseous Ion Sources (Nikolai Gavrilov)71 Introduction72 Basic Types of High Current Ion Sources721 Filament Driven Ion Sources722 High-Frequency Ion Sources723 Cold Cathode Ion Sources73 Conclusion8 Freeman and Bernas Ion Sources (Marvin Farley, Peter Rose, and Geoffrey Ryding)81 Introduction82 The Freeman Ion Source83 The Bernas Ion Source84 Further Discussion of the Source Plasma841 Plasma and Sheath Potentials842 Effect of Sputtering on the Plasma843 Ion Heating of the Cathode and Anticathode in the Bernas Source844 Current Balance in the Freeman Source845 Current Balance in the Bernas Source85 Control Systems851 Freeman and Bernas Controls852 Bernas Indirectly Heated Cathode86 Lifetime and Maintenance Issues861 Use of BF3862 Use of PH3, AsH3, P4, and As4863 Use of Sb, Sb2O3, and SbF3864 Use of SiF4 and GeF4865 General Guidelines for the Use of Other Organic and Inorganic Compounds866 Electrode Cleaning and Maintenance867 Insulator Cleaning and Maintenance9 Radio-Frequency Driven Ion Sources (Ka-Ngo Leung)91 Introduction92 Capacitively Coupled RF Sources93 Inductively Coupled RF Sources931 Source Operation with an External RF Antenna932 Multicusp Source Operation with Internal RF Antenna933 Increasing the Ion Beam Brightness of a Multicusp RF Source with Internal Antenna934 Multicusp Source Operation with External RF Antenna94 Applications of RF Ion Sources10 Microwave Ion Sources (Noriyuki Sakudo)101 Introduction102 Microwave Plasma in Magnetic Fields1021 Plasma Parameter Changes due to Magnetic Field and Microwave Frequency1022 High Density Plasma at Off-Resonance103 Some Practical Ion Source Considerations1031 Microwave Impedance Matching to the Plasma1032 High Current Ion Beams Extracted from an Off-Resonance Microwave Ion Source104 Versatility of Beam Extraction1041 Large Cross Sectional Beam formed by a Multi-Aperture Extractor1042 Slit-Shaped Beam for Ion Implantation1043 Further Improvements in Slit-Shaped Beams1044 Compact Microwave Ion Sources105 Diversity of Available Ion Species106 Microwave Ion Sources for Commercial Implanters1061 Semiconductor Device Fabrication1062 SOI Wafer Fabrication107 Conclusion11 ECR Ion Sources (Daniela Leitner and Claude Lyneis)111 Introduction112 Brief History of the Development of ECR Ion Sources113 The LBNL ECR Ion Sources1131 The AECR-U Ion Source1132 The VENUS ECR Ion Source114 Physics and Operation of ECR Ion Sources1141 Electron Impact Ionization1142 Charge Exchange1143 Plasma Confinement1144 ECR Heating1145 Gas Mixing115 Design Considerations116 Microwave and Magnetic Field Technologies117 Metal Ion Beam Production1171 Direct Insertion1172 Sputtering1173 Gaseous or Volatile Compounds (MIVOC Method)1174 External Furnaces (Ovens)1175 Efficiencies118 Ion Beam Extraction from ECR Ion Sources1181 Influence of Magnetic Field and Ion Temperature on the Extracted Ion Beam Emittance1182 Influence of Plasma Confinement on Beam Emittance119 Conclusion12 Laser Ion Sources (Boris Sharkov)121 Introduction122 Basics of Laser Plasma Physics123 General Description1231 Laser Characteristics1232 Target Illumination System1233 Target Ensemble1234 Pulse Width and Target-Extractor Separation1235 Extraction System1236 Low Energy Beam Transport Line (LEBT)124 Beam Parameters1241 Current Profile1242 Charge State Distribution1243 Beam Emittance1244 Pulse Stability and Source Lifetime125 Sources at Accelerators1251 The LIS at ITEP-TWAC1252 The LIS at CERN1253 The LIS at JINR Dubna126 Other Operating Options1261 High Current, Low Charge State Mode1262 Influence of Magnetic Field on the Laser Ion Source Plasma127 Conclusion13 Vacuum Arc Ion Sources (Efim Oks and Ian Brown)131 Introduction132 Background133 Vacuum Arc Plasma Physics134 Principles of Operation135 Beam Parameters1351 Beam Current1352 Beam Profile, Divergence and Emittance1353 Beam Composition1354 Beam Noise, Pulse Stability, and Lifetime136 Recent Improvements in Parameters and Performance1361 Enhancement of Ion Charge States1362 Alternative Triggering of the Vacuum Arc1363 Reduction in Ion Beam Noise and Increased Pulse Stability1364 Generation of Gaseous Ions137 Source Embodiments1371 LBNL Mevva Sources1372 HCEI Titan Sources1373 NPI Raduga Sources1374 GSI Varis Sources1375 Other Versions and Variants138 Conclusion14 Negative Ion Sources (Junzo Ishikawa)141 Introduction142 Surface Effect Negative Ion Sources1421 Negative Ion Production by Surface Effect1422 Surface Effect Light Negative Ion Sources1423 Surface Effect Heavy Negative Ion Sources143 Volume Production Negative Ion Sources1431 Negative Ion Formation by Volume Production1432 History of Source Development1433 Recent Volume Production Negative Ion Sources144 Charge Transfer Negative Ion Sources1441 Negative Ion Production by Charge Transfer1442 History of Charge Transfer Negative Ion Sources145 Conclusion15 Ion Sources for Heavy Ion Fusion (Joe Kwan)151 Introduction1511 Heavy Ion Beam Driven Inertial Fusion1512 HIF Ion Source Requirements152 Beam Extraction and Transport1521 Scaling Laws for Beam Extraction and Transport1522 Large Beam vs Multiple Small Beamlets153 Surface Ionization Sources1531 Contact Ionizers1532 Aluminosilicate Sources1533 Surface Ionization Sources for HIF154 Gas Discharge Ion Sources for HIF155 Pulsed Discharge Sources1551 Metal Vapor Vacuum Arc Sources for HIF1581 Laser Ion Sources for HIF156 Negative Ion Sources for HIF157 HIF Injector Designs1571 Large Diameter Source Approach1572 Merging Multiple Beamlets Approach158 Conclusion16 Giant Ion Sources for Neutral Beams (Yasuhiko Takeiri)161 Introduction162 Large Volume Plasma Production1621 Bucket Plasma Sources with Multi-Cusp Magnetic Field1622 Plasma Modeling1623 Atomic Fraction163 Large Area Beam Extraction and Acceleration1631 Electrode Systems for Large Area Beams1632 Beamlet Steering164 Giant Positive Ion Sources165 Giant Negative Ion Sources1651 Operational Principles of Negative Ion Sources1652 Negative Ion Extraction and Acceleration1653 Giant Negative Ion Sources166 Future Directions of DevelopmentAppendicesAppendix 1: Physical ConstantsAppendix 2: Some Plasma ParametersAppendix 3: Table of the ElementsIndex

701 citations

Journal ArticleDOI
TL;DR: The focused ion beam field has been spurred by the invention of the liquid metal ion source and by the utilization of focusing columns with mass separation capability, which has led to the use of alloy ion sources making available a large menu of ion species, in particular the dopants of Si and GaAs as discussed by the authors.
Abstract: Ions of kiloelectron volt energies incident on a solid surface produce a number of effects: several atoms are sputtered off, several electrons are emitted, chemical reactions may be induced, atoms are displaced from their equilibrium positions, and ions implant themselves in the solid, altering its properties. Some of these effects, such as sputtering and implantation are widely used in semiconductor device fabrication and in other fields. Thus the capability to focus a beam of ions to submicrometer dimensions, i.e., dimensions compatible with the most demanding fabrication procedures, is an important development. The focused ion beam field has been spurred by the invention of the liquid metal ion source and by the utilization of focusing columns with mass separation capability. This has led to the use of alloy ion sources making available a large menu of ion species, in particular the dopants of Si and GaAs. The ability to sputter and to also induce deposition by causing breakdown of an adsorbed film has produced an immediate application of focused ion beams to photomask repair. The total number of focused ion beamfabrication systems in use worldwide is about 35, about 25 of them in Japan. In addition, there are many more simpler focused ion beam columns for specialized uses. The interest is growing rapidly. The following range of specifications of these systems has been reported: accelerating potential 3 to 200 kV, ion current density in focal spot up to 10 A/cm2, beam diameters from 0.05 to 1 μm, deflection accuracy of the beam over the surface ±0.1 μm, and ion species available Ga, Au, Si, Be, B, As, P, etc. Some of the applications which have been demonstrated or suggested include: mask repair, lithography (to replace electron beamlithography), direct, patterned, implantationdoping of semiconductors, ion induced deposition for circuit repair or rewiring, scanning ion microscopy, and scanning ion mass spectroscopy.

559 citations

Journal ArticleDOI
TL;DR: C60 is shown to be a very favorable ion beam system for TOF-SIMS, delivering high yield, close to 10% total yield, favoring high-mass ions, and on thick samples, offering the possibility of analysis well beyond the static limit.
Abstract: A buckminsterfullerene (C60)-based primary ion beam system has been developed for routine application in TOF-SIMS analysis of organic materials. The ion beam system is described, and its performance is characterized. Nanoamp beam currents of C60+ are obtainable in continuous current mode. C602+ can be obtained in pulsed mode. At 10 keV, the beam can be focused to less than 3 μm with 0.1 nA currents. TOF-SIMS studies of a series of molecular solids and a number of polymer systems in monolayer and thick film forms are reported. Very significant enhancement of secondary ion yields, particularly at higher mass, were observed using 10-keV C60+ for all samples other than PTFE, as compared to those observed from 10 keV Ga+ primary ions. Three materials (PS2000, Irganox 1010, PET) were studied in detail to investigate primary ion-induced disappearance (damage) cross sections to determine the increase in secondary ion formation efficiency. The C60 disappearance cross sections observed from monolayer film PS2000 an...

504 citations


Network Information
Related Topics (5)
Thin film
275.5K papers, 4.5M citations
84% related
Silicon
196K papers, 3M citations
83% related
Ion
107.5K papers, 2M citations
82% related
Electron
111.1K papers, 2.1M citations
82% related
Amorphous solid
117K papers, 2.2M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202317
202237
202117
202013
201925
201821