scispace - formally typeset
Search or ask a question

Showing papers on "Ionic conductivity published in 2016"


Journal ArticleDOI
TL;DR: In this article, state-of-the-art polymer electrolytes are discussed with respect to their electrochemical and physical properties for their application in lithium polymer batteries, and the incorporation of inorganic fillers into GPEs to improve their mechanical strength as well as their transport properties and electrochemical properties is discussed.
Abstract: In this review, state-of-the-art polymer electrolytes are discussed with respect to their electrochemical and physical properties for their application in lithium polymer batteries. We divide polymer electrolytes into the two large categories of solid polymer electrolytes and gel polymer electrolytes (GPE). The performance requirements and ion transfer mechanisms of polymer electrolytes are presented at first. Then, solid polymer electrolyte systems, including dry solid polymer electrolytes, polymer-in-salt systems (rubbery electrolytes), and single-ion conducting polymer electrolytes, are described systematically. Solid polymer electrolytes still suffer from poor ionic conductivity, which is lower than 10−5 S cm−1. In order to further improve the ionic conductivity, numerous new types of lithium salt have been studied and inorganic fillers have been incorporated into solid polymer electrolytes. In the section on gel polymer electrolytes, the types of plasticizer and preparation methods of GPEs are summarized. Although the ionic conductivity of GPEs can reach 10−3 S cm−1, their low mechanical strength and poor interfacial properties are obstacles to their practical application. Significant attention is paid to the incorporation of inorganic fillers into GPEs to improve their mechanical strength as well as their transport properties and electrochemical properties.

969 citations


Journal ArticleDOI
TL;DR: Much stronger chemical/mechanical interactions between monodispersed 12 nm diameter SiO2 nanospheres and poly(ethylene oxide) (PEO) chains were produced by in situ hydrolysis, which significantly suppresses the crystallization of PEO and thus facilitates polymer segmental motion for ionic conduction.
Abstract: High ionic conductivity solid polymer electrolyte (SPE) has long been desired for the next generation high energy and safe rechargeable lithium batteries. Among all of the SPEs, composite polymer electrolyte (CPE) with ceramic fillers has garnered great interest due to the enhancement of ionic conductivity. However, the high degree of polymer crystallinity, agglomeration of ceramic fillers, and weak polymer–ceramic interaction limit the further improvement of ionic conductivity. Different from the existing methods of blending preformed ceramic particles with polymers, here we introduce an in situ synthesis of ceramic filler particles in polymer electrolyte. Much stronger chemical/mechanical interactions between monodispersed 12 nm diameter SiO2 nanospheres and poly(ethylene oxide) (PEO) chains were produced by in situ hydrolysis, which significantly suppresses the crystallization of PEO and thus facilitates polymer segmental motion for ionic conduction. In addition, an improved degree of LiClO4 dissociati...

702 citations


Journal ArticleDOI
TL;DR: This work reports for the first time, to the authors' knowledge, a 3D lithium-ion–conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ions conductor to provide continuous Li+ transfer channels in a polyethylene oxide (PEO)-based composite and provides structural reinforcement to enhance the mechanical properties of the polymer matrix.
Abstract: Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (∼3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion-conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li(+) transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10(-4) S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm(2) for around 500 h and a current density of 0.5 mA/cm(2) for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium-sulfur batteries.

679 citations


Journal ArticleDOI
TL;DR: This article provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.
Abstract: Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

604 citations


Journal ArticleDOI
TL;DR: In this article, the reaction of Li10GeP2S12 (LGPS) with lithium metal was analyzed using in situ X-ray photoelectron spectroscopy (XPS) in combination with time-resolved electrochemical measurements.
Abstract: The very high ionic conductivity of Li10GeP2S12 (LGPS) makes it a potential solid electrolyte for lithium all-solid-state batteries. Besides the high ionic conductivity, another key requirement is the stability of the solid electrolyte against degradation reactions with the electrodes; here, we analyze the reaction of LGPS with lithium metal. In situ X-ray photoelectron spectroscopy (XPS), in combination with time-resolved electrochemical measurements offers detailed information on the chemical reactions at the Li/LGPS interface. The decomposition of Li10GeP2S12 leads to the formation of an interphase composed of Li3P, Li2S, and Li–Ge alloy, which is in perfect agreement with theoretical predictions, and an increase of the interfacial resistance. These results highlight the necessity to perform long-term, time-resolved electrochemical measurements when evaluating potential new solid electrolytes for solid-state batteries. The kinetics of this interphase growth—comparable to SEI formation on lithium anodes...

570 citations


Journal ArticleDOI
TL;DR: In this paper, composite membranes consisting of lithium garnet (i.e. Li6.4La3Zr1.4Ta0.6O12, LLZTO) particles and Li-salt-free polyethylene oxides (PEOs) are produced as solid-state electrolytes.

566 citations


Journal ArticleDOI
TL;DR: In this article, a dual-phase all-inorganic composite CsPbBr3-CsPb2Br5 was developed and applied as the emitting layer in LEDs, which exhibited a maximum luminance of 3853 cd m-2, with current density (CE) of ≈8.98 cd A-1 and external quantum efficiency (EQE) of 2.21%, respectively.
Abstract: A dual-phase all-inorganic composite CsPbBr3-CsPb2Br5 is developed and applied as the emitting layer in LEDs, which exhibited a maximum luminance of 3853 cd m–2, with current density (CE) of ≈8.98 cd A–1 and external quantum efficiency (EQE) of ≈2.21%, respectively. The parasite of secondary phase CsPb2Br5 nanoparticles on the cubic CsPbBr3 nanocrystals could enhance the current efficiency by reducing diffusion length of excitons on one side, and decrease the trap density in the band gap on the other side. In addition, the introduction of CsPb2Br5 nanoparticles could increase the ionic conductivity by reducing the barrier against the electronic and ionic transport, and improve emission lifetime by decreasing nonradiative energy transfer to the trap states via controlling the trap density. The dual-phase all-inorganic CsPbBr3-CsPb2Br5 composite nanocrystals present a new route of perovskite material for advanced light emission applications.

394 citations


Journal ArticleDOI
TL;DR: The first experimental evidence is provided to show that Li ions favor the pathway through the LLZO ceramic phase instead of the PEO-LLZO interface or PEO.
Abstract: Polymer-ceramic composite electrolytes are emerging as a promising solution to deliver high ionic conductivity, optimal mechanical properties, and good safety for developing high-performance all-solid-state rechargeable batteries. Composite electrolytes have been prepared with cubic-phase Li7 La3 Zr2 O12 (LLZO) garnet and polyethylene oxide (PEO) and employed in symmetric lithium battery cells. By combining selective isotope labeling and high-resolution solid-state Li NMR, we are able to track Li ion pathways within LLZO-PEO composite electrolytes by monitoring the replacement of (7) Li in the composite electrolyte by (6) Li from the (6) Li metal electrodes during battery cycling. We have provided the first experimental evidence to show that Li ions favor the pathway through the LLZO ceramic phase instead of the PEO-LLZO interface or PEO. This approach can be widely applied to study ion pathways in ionic conductors and to provide useful insights for developing composite materials for energy storage and harvesting.

383 citations


Journal ArticleDOI
09 Jun 2016-Nature
TL;DR: The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy.
Abstract: Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

359 citations


Journal ArticleDOI
TL;DR: Li10GeP2S12 (LGPS) is incorporated into polyethylene oxide (PEO) matrix to fabricate composite solid polymer electrolyte (SPE) membranes.

339 citations


Journal ArticleDOI
TL;DR: It is found that the contact between Li2CO3 and LiF can promote space charge accumulation along their interfaces, which generates a higher ionic carrier concentration and significantly improves lithium ion transport and reduces electron leakage.
Abstract: The solid electrolyte interphase (SEI), a passivation layer formed on electrodes, is critical to battery performance and durability. The inorganic components in SEI, including lithium carbonate (Li2CO3) and lithium fluoride (LiF), provide both mechanical and chemical protection, meanwhile control lithium ion transport. Although both Li2CO3 and LiF have relatively low ionic conductivity, we found, surprisingly, that the contact between Li2CO3 and LiF can promote space charge accumulation along their interfaces, which generates a higher ionic carrier concentration and significantly improves lithium ion transport and reduces electron leakage. The synergetic effect of the two inorganic components leads to high current efficiency and long cycle stability.

Journal ArticleDOI
TL;DR: By regulating the mobility of classic −EO− based backbones, an innovative polymer electrolyte system can be architectured and allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures.
Abstract: Here we demonstrate that by regulating the mobility of classic −EO− based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene oxide (PEO) chains plasticized by tetraglyme at various lithium salt concentrations. The polymer networks exhibit sterling mechanical robustness, high flexibility, homogeneous and highly amorphous characteristics. Ambient temperature ionic conductivity values exceeding 0.1 mS cm−1 are obtained, along with a wide electrochemical stability window (>5 V vs. Li/Li+), excellent lithium ion transference number (>0.6) as well as interfacial stability. Moreover, the efficacious resistance to lithium dendrite nucleation and growth postulates the implementation of these polymer electrolytes in next generation of all-solid Li-metal batteries working at ambient conditions.

Journal ArticleDOI
TL;DR: All-solid-state lithium batteries employing cobalt sulfide-Li7P3S11 nanocomposites in combination with the neat Li7P 3S11 electrolyte and Super P as the cathode and lithium metal as the anode exhibit excellent rate capability and cycling stability.
Abstract: High energy and power densities are the greatest challenge for all-solid-state lithium batteries due to the poor interfacial compatibility between electrodes and electrolytes as well as low lithium ion transfer kinetics in solid materials. Intimate contact at the cathode–solid electrolyte interface and high ionic conductivity of solid electrolyte are crucial to realizing high-performance all-solid-state lithium batteries. Here, we report a general interfacial architecture, i.e., Li7P3S11 electrolyte particles anchored on cobalt sulfide nanosheets, by an in situ liquid-phase approach. The anchored Li7P3S11 electrolyte particle size is around 10 nm, which is the smallest sulfide electrolyte particles reported to date, leading to an increased contact area and intimate contact interface between electrolyte and active materials. The neat Li7P3S11 electrolyte synthesized by the same liquid-phase approach exhibits a very high ionic conductivity of 1.5 × 10–3 S cm–1 with a particle size of 0.4–1.0 μm. All-solid-s...

Journal ArticleDOI
TL;DR: In this article, the authors track Li ion pathways within LLZO-PEO composite electrolytes by monitoring the replacement of 7Li in the composite electrolyte by 6Li from the 6Li metal electrodes during battery cycling.
Abstract: Polymer–ceramic composite electrolytes are emerging as a promising solution to deliver high ionic conductivity, optimal mechanical properties, and good safety for developing high-performance all-solid-state rechargeable batteries. Composite electrolytes have been prepared with cubic-phase Li7La3Zr2O12 (LLZO) garnet and polyethylene oxide (PEO) and employed in symmetric lithium battery cells. By combining selective isotope labeling and high-resolution solid-state Li NMR, we are able to track Li ion pathways within LLZO-PEO composite electrolytes by monitoring the replacement of 7Li in the composite electrolyte by 6Li from the 6Li metal electrodes during battery cycling. We have provided the first experimental evidence to show that Li ions favor the pathway through the LLZO ceramic phase instead of the PEO-LLZO interface or PEO. This approach can be widely applied to study ion pathways in ionic conductors and to provide useful insights for developing composite materials for energy storage and harvesting.

Journal ArticleDOI
28 Nov 2016-ACS Nano
TL;DR: A composite polymer electrolyte with oxygen-ion conductive nanowires that could address the challenges of all-solid-state LIBs is reported, demonstrating much higher ionic conductivity.
Abstract: Solid Li-ion electrolytes used in all-solid-state lithium-ion batteries (LIBs) are being considered to replace conventional liquid electrolytes that have leakage, flammability, and poor chemical stability issues, which represents one major challenge and opportunity for next-generation high-energy-density batteries. However, the low mobility of lithium ions in solid electrolytes limits their practical applications. Here, we report a solid composite polymer electrolyte with Y2O3-doped ZrO2 (YSZ) nanowires that are enriched with positive-charged oxygen vacancies. The morphologies and ionic conductivities have been studied systemically according to concentration of Y2O3 dopant in the nanowires. In comparison to the conventional filler-free electrolyte with a conductivity of 3.62 × 10–7 S cm–1, the composite polymer electrolytes with the YSZ nanowires show much higher ionic conductivity. It indicates that incorporation of 7 mol % of Y2O3-doped ZrO2 nanowires results in the highest ionic conductivity of 1.07 × ...

Journal ArticleDOI
TL;DR: In this article, an inorganic solid electrolyte was shown to have an exceptionally high ionic conductivity of 25 mS cm−1, which allows a solid-state battery to deliver 70% of its maximum capacity in just one minute at room temperature.
Abstract: Materials with high ionic conductivity are urgently needed for the development of solid-state lithium batteries. Now, an inorganic solid electrolyte is shown to have an exceptionally high ionic conductivity of 25 mS cm−1, which allows a solid-state battery to deliver 70% of its maximum capacity in just one minute at room temperature.

Journal ArticleDOI
TL;DR: In this article, a networked polymer electrolyte simultaneously displays tLi+ approaching unity and high ionic conductivity (σ ≈ 10−4 S cm−1 at 25 °C).
Abstract: Safety issues rising from the use of conventional liquid electrolytes in lithium-based batteries are currently limiting their application to electric vehicles and large-scale energy storage from renewable sources. Polymeric electrolytes represent a solution to this problem due to their intrinsic safety. Ideally, polymer electrolytes should display both high lithium transference number (tLi+) and ionic conductivity. Practically, strategies for increasing tLi+ often result in low ionic conductivity and vice versa. Herein, networked polymer electrolytes simultaneously displaying tLi+ approaching unity and high ionic conductivity (σ ≈ 10–4 S cm–1 at 25 °C) are presented. Lithium cells operating at room temperature demonstrate the promising prospect of these materials.

Journal ArticleDOI
TL;DR: Owing to the combination of all mentioned properties, the prepared polymer materials were used as solid polyelectrolytes and as binders in the elaboration of lithium-metal battery prototypes with high charge/discharge efficiency and excellent specific capacity at C/15 rate.
Abstract: Polymer electrolytes have been proposed as replacement for conventional liquid electrolytes in lithium-ion batteries (LIBs) due to their intrinsic enhanced safety. Nevertheless, the power delivery of these materials is limited by the concentration gradient of the lithium salt. Single-ion conducting polyelectrolytes represent the ideal solution since their nature prevents polarization phenomena. Herein, the preparation of a new family of single-ion conducting block copolymer polyelectrolytes via reversible addition–fragmentation chain transfer polymerization technique is reported. These copolymers comprise poly(lithium 1-[3-(methacryloyloxy)propylsulfonyl]-1-(trifluoromethylsulfonyl)imide) and poly(ethylene glycol) methyl ether methacrylate blocks. The obtained polyelectrolytes show low Tg values in the range of −61 to 0.6 °C, comparatively high ionic conductivity (up to 2.3 × 10–6 and 1.2 × 10–5 S cm–1 at 25 and 55 °C, respectively), wide electrochemical stability (up to 4.5 V versus Li+/Li), and a lithiu...

Journal ArticleDOI
TL;DR: This work reports the computation-assisted discovery and synthesis of a high-performance solid-state electrolyte material: Na10SnP2S12, with room temperature ionic conductivity rivalling the conductivity of the best sodium sulfide solid electrolytes to date.
Abstract: Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-state batteries with ionic electrolytes eliminates this concern, while also allowing novel device architectures and potentially improving cycle life. Here we report the computation-assisted discovery and synthesis of a high-performance solid-state electrolyte material: Na10SnP2S12, with room temperature ionic conductivity of 0.4 mS cm(-1) rivalling the conductivity of the best sodium sulfide solid electrolytes to date. We also computationally investigate the variants of this compound where tin is substituted by germanium or silicon and find that the latter may achieve even higher conductivity.

Journal ArticleDOI
TL;DR: The phase transition from garnet to “non-garnet” and the different sintering behavior of Ga and Al stabilized LLZO are identified as important factors in determining the electrochemical properties, illustrating that understanding the structure–properties relationships in this class of materials allows practical obstacles to its utilization to be readily overcome.
Abstract: Several “Beyond Li-Ion Battery” concepts such as all solid-state batteries and hybrid liquid/solid systems envision the use of a solid electrolyte to protect Li-metal anodes. These configurations are very attractive due to the possibility of exceptionally high energy densities and high (dis)charge rates, but they are far from being realized practically due to a number of issues including high interfacial resistance and difficulties associated with fabrication. One of the most promising solid electrolyte systems for these applications is Al or Ga stabilized Li7La3Zr2O12 (LLZO) based on high ionic conductivities and apparent stability against reduction by Li metal. Nevertheless, the fabrication of dense LLZO membranes with high ionic conductivity and low interfacial resistances remains challenging; it definitely requires a better understanding of the structural and electrochemical properties. In this study, the phase transition from garnet (Ia3d, No. 230) to “non-garnet” (I43d, No. 220) space group as a f...

Journal ArticleDOI
TL;DR: In this article, a review of recent progress in nitrile-based polymer electrolytes has been reviewed in terms of their potential application in flexible, solid-state or high voltage lithium batteries.
Abstract: Nitrile or cyano-based compounds have aroused interest in high performance battery electrolyte fields due to their unique characteristics such as a high dielectric constant, high anodic oxidization potential and favorable interaction with lithium ions. Particularly, owing to the presence of a unique plastic-crystalline phase, succinonitrile/salt-based solid electrolytes possess an ultra high ionic conductivity of more than 10−3 S cm−1 at room temperature. Herein, recent progress in nitrile-based polymer electrolytes has been reviewed in terms of their potential application in flexible, solid-state or high voltage lithium batteries. Factors affecting the ionic conductivity of nitrile-based electrolytes have also been summarized. We hope that fresh and established researchers can obtain a clear perspective of nitrile based polymer electrolytes and our mini review can spur more extensive interest for the exploration of high performance batteries.

Journal ArticleDOI
TL;DR: The results show that the composition and microstructure of the pellets play important roles influencing the ionic conductivity, relative density, and air stability, and the importance of synthesis parameters, crucibles included, to obtain the LLZO electrolyte with high ionic Conductivity and good air stability.
Abstract: Li7La3Zr2O12 (LLZO) is a promising electrolyte material for all-solid-state battery due to its high ionic conductivity and good stability with metallic lithium. In this article, we studied the effect of crucibles on the ionic conductivity and air stability by synthesizing 0.25Al doped LLZO pellets in Pt crucibles and alumina crucibles, respectively. The results show that the composition and microstructure of the pellets play important roles influencing the ionic conductivity, relative density, and air stability. Specifically, the 0.25Al-LLZO pellets sintered in Pt crucibles exhibit a high relative density (∼96%) and high ionic conductivity (4.48 × 10–4 S cm–1). The ionic conductivity maintains 3.6 × 10–4 S cm–1 after 3-month air exposure. In contrast, the ionic conductivity of the pellets from alumina crucibles is about 1.81 × 10–4 S cm–1 and drops to 2.39 × 10–5 S cm–1 3 months later. The large grains and the reduced grain boundaries in the pellets sintered in Pt crucibles are favorable to obtain high io...

Journal ArticleDOI
TL;DR: In this article, the PEO-20%LAGP-I hybrid electrolyte exhibits a maximum ionic conductivity of 6.76 × 10 − 4 ǫ s cm − 1 and an electrochemical window of 0 − 5.3 V at 60°C.

Journal ArticleDOI
TL;DR: LiCB9H10 and NaCB 9H10 exhibit liquid-like cationic conductivities (≥0.03 S cm−1) in their disordered hexagonal phases near or at room temperature as discussed by the authors.
Abstract: Both LiCB9H10 and NaCB9H10 exhibit liquid-like cationic conductivities (≥0.03 S cm–1) in their disordered hexagonal phases near or at room temperature. Furthermore, these unprecedented conductivities and favorable stabilities enabled by the large pseudoaromatic polyhedral anions render these materials in their pristine or further modified forms as promising solid electrolytes in next-generation, power devices.

Journal ArticleDOI
TL;DR: In this paper, the structure and conductivity of argyrodite Li6PS5Cl material with high ionic conductivity was investigated by milling for 8 hours at 550rpm followed by a heat-treatment at 550°C.

Journal ArticleDOI
TL;DR: In this paper, a bibliometric analysis of the publications on various types of Na+ ion conducting electrolytes since 1990 shows a total of 200 + publications and reveals an exponential growth in the last few years, due to reasons that the sodium ion systems promise great potential as the future large scale power sources for variety of applications.

Journal ArticleDOI
TL;DR: In this article, the authors present neutron powder diffraction data in combination with analyses of differential bond valence and nuclear density maps to elucidate the underlying diffusion pathways in Li10GeP2S12.
Abstract: Inspired by the ongoing debate about the ion dynamics in the lithium superionic conductor Li10GeP2S12 (LGPS), we present neutron powder diffraction data in combination with analyses of differential bond valence and nuclear density maps to elucidate the underlying diffusion pathways in Li10GeP2S12. LGPS exhibits quasi-isotropic three-dimensional lithium diffusion pathways, which is a combination of one-dimensional diffusion channels crossing two diffusion planes. Furthermore, ultrasonic speeds of sound measurements are used to understand the lattice dynamics and obtain the Debye temperature of LGPS. Temperature dependent X-ray diffraction is performed in order to understand the local temperature-dependent behavior of the prevalent structural backbone, as well as the thermal stability of the material. At elevated temperatures, the superionic conducting Li10GeP2S12 phase partially decomposes into Li4P2S6, explaining the deterioration of the ionic conductivity upon heating.

Journal ArticleDOI
TL;DR: Through coupled experimental analysis and computational techniques, the origin of anodic stability for a range of nonaqueous zinc electrolytes is uncovered, and it is elucidates that the solvents play an important role in anodic Stability of most electrolytes.
Abstract: Through coupled experimental analysis and computational techniques, we uncover the origin of anodic stability for a range of nonaqueous zinc electrolytes. By examination of electrochemical, structural, and transport properties of nonaqueous zinc electrolytes with varying concentrations, it is demonstrated that the acetonitrile-Zn(TFSI)2, acetonitrile-Zn(CF3SO3)2, and propylene carbonate-Zn(TFSI)2 electrolytes can not only support highly reversible Zn deposition behavior on a Zn metal anode (≥99% of Coulombic efficiency) but also provide high anodic stability (up to ∼3.8 V vs Zn/Zn(2+)). The predicted anodic stability from DFT calculations is well in accordance with experimental results, and elucidates that the solvents play an important role in anodic stability of most electrolytes. Molecular dynamics (MD) simulations were used to understand the solvation structure (e.g., ion solvation and ionic association) and its effect on dynamics and transport properties (e.g., diffusion coefficient and ionic conductivity) of the electrolytes. The combination of these techniques provides unprecedented insight into the origin of the electrochemical, structural, and transport properties in nonaqueous zinc electrolytes.

Journal ArticleDOI
TL;DR: In this paper, a new solid polymer electrolyte (SPE) PEO-LiTFSI-1%LGPS-10%SN was successfully prepared via a convenient method with low cost.

Journal ArticleDOI
TL;DR: Design of the solid electrolyte Na3 SbS4 is described, realizing excellent air stability and an economic synthesis based on hard and soft acid and base (HSAB) theory, and exhibits a remarkably high ionic conductivity.
Abstract: All-solid-state sodium batteries, using solid electrolyte and abundant sodium resources, show great promise for safe, low-cost, and large-scale energy storage applications. The exploration of novel solid electrolytes is critical for the room temperature operation of all-solid-state Na batteries. An ideal solid electrolyte must have high ionic conductivity, hold outstanding chemical and electrochemical stability, and employ low-cost synthetic methods. Achieving the combination of these properties is a grand challenge for the synthesis of sulfide-based solid electrolytes. Design of the solid electrolyte Na3SbS4 is described, realizing excellent air stability and an economic synthesis based on hard and soft acid and base (HSAB) theory. This new solid electrolyte also exhibits a remarkably high ionic conductivity of 1 mS cm−1 at 25 °C and ideal compatibility with a metallic sodium anode.