scispace - formally typeset
Search or ask a question
Topic

Ionic conductivity

About: Ionic conductivity is a research topic. Over the lifetime, 19412 publications have been published within this topic receiving 519167 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: All of the AAEMs evaluated in this study demonstrated unacceptably low conductivities when the humidity of the surrounding static atmospheres was reduced; this highlights the requirement for continued AAEM development for operation in H(2)/air fuel cells with low humidity gas supplies.
Abstract: This article presents the first systematic study of the effect of Relative Humidity (RH) on the water content and hydroxide ion conductivity of quaternary ammonium-based Alkaline Anion-Exchange Membranes (AAEMs). These AAEMs have been developed specifically for application in alkaline membrane fuel cells, where conductivities of >0.01 S cm−1 are mandatory. When fully hydrated, an ETFE-based radiation-grafted AAEM exhibited a hydroxide ion conductivity of 0.030 ± 0.005 S cm−1 at 30 °C without additional incorporation of metal hydroxide salts; this is contrary to the previous wisdom that anion-exchange membranes are very low in ionic conductivity and represents a significant breakthrough for metal-cation-free alkaline ionomers. Desirably, this AAEM also showed increased dimensional stability on full hydration compared to a Nafion®-115 proton-exchange membrane; this dimensional stability is further improved (with no concomitant reduction in ionic conductivity) with a commercial AAEM of similar density but containing additional cross-linking. However, all of the AAEMs evaluated in this study demonstrated unacceptably low conductivities when the humidity of the surrounding static atmospheres was reduced (RH = 33–91%); this highlights the requirement for continued AAEM development for operation in H2/air fuel cells with low humidity gas supplies. Preliminary investigations indicate that the activation energies for OH− conduction in these quaternary ammonium-based solid polymer electrolytes are typically 2–3 times higher than for H+ conduction in acidic Nafion®-115 at all humidities.

133 citations

Journal ArticleDOI
TL;DR: In this paper, a network single ion conductors based on comb-branch polyepoxide ethers and lithium bis(allylmalonato) borate have been synthesized and thoroughly characterized by means of ionic conductivity measurements, electrochemical impedance, and cycling in symmetrical Li/Li half cells, Li/V6O13 full cells.
Abstract: Network single ion conductors (NSICs) based on comb-branch polyepoxide ethers and lithium bis(allylmalonato) borate have been synthesized and thoroughly characterized by means of ionic conductivity measurements, electrochemical impedance, and cycling in symmetrical Li/Li half cells, Li/V6O13 full cells in which a NSIC was used as both binder and electrolyte in the cathode electrode and as the electrolyte separator membrane, and by dynamic mechanical analysis (DMA). The substitution of the trimethylene oxide (TMO) unit into the side chains in place of ethylene oxide (EO) units increased the polymer−ion mobility (lower glass transition temperature). However, the ionic conductivity was nearly one and half orders of magnitude lower than the corresponding pure EO-based single ion conductor at the same salt concentration, which may be ascribed to the lower dielectric constant of the TMO side chains that result in a lower concentration of free conducting lithium cations. For a highly cross-linked system (EO/Li =...

133 citations

Journal ArticleDOI
TL;DR: In this article, thin films of high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF 3 SO 3 ) salt were prepared by solution casting method and the ionic conductivity and dielectric measurements were carried out on these films over a wide frequency regime at various temperatures.
Abstract: Thin films of high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF 3 SO 3 ) salt were prepared by solution casting method. The ionic conductivity and dielectric measurements were carried out on these films over a wide frequency regime at various temperatures. The conductivity–temperature plots were found to obey classical Arrhenius relationship. The dielectric behavior was analysed using dielectric permittivity and dielectric modulus of the samples. FTIR studies show some simple overlapping and shift in peaks between high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF 3 SO 3 ) salt in the polymer electrolyte complexes.

133 citations

Journal ArticleDOI
TL;DR: Rupp et al. as discussed by the authors used Li3N multilayers as a lithium reservoir for the formation of lithium-garnet films, significantly reducing the operating temperature while maintaining the ionic conductivity.
Abstract: A critical parameter for the large-scale integration of solid-state batteries is to establish processing strategies to assemble battery materials at the lowest processing temperature possible while keeping lithium conduction up. Despite extensive research efforts, integrating ceramic film electrolytes while keeping a high lithium concentration and conduction at a low processing temperature remains challenging. Here, we report an alternative ceramic processing strategy through the evolution of multilayers establishing lithium reservoirs directly in lithium–garnet films that allow for lithiated and fast-conducting cubic solid-state battery electrolytes at unusually low processing temperatures. A lithium–garnet film processed via the multilayer processing approach exhibited the fastest ionic conductivity of 2.9 ± 0.05 × 10−5 S cm−1 (at room temperature) and the desired cubic phase, but was stabilized at a processing temperature lowered by 400 °C. This method enables future solid-state battery architectures with more room for cathode volumes by design, and reduces the processing temperature. Manufacturing high-performing solid electrolytes at low processing temperature requires improved techniques. Here Jennifer Rupp and colleagues report a ceramic processing strategy, using Li3N multilayers as a lithium reservoir for the formation of lithium–garnet films, significantly reducing the operating temperature while maintaining the ionic conductivity.

132 citations

Journal ArticleDOI
TL;DR: In this paper, a polymer light-emitting electrochemical cells (LECs) were fabricated with MEH−PPV as the luminescent polymer and the ionic liquid of imidazolium salts as the supporting electrolyte.
Abstract: The polymer light-emitting electrochemical cells (LECs) were fabricated with MEH−PPV as the luminescent polymer and the ionic liquid of imidazolium salts as the supporting electrolyte. The imidazolium salts utilized include various 1-methyl-3-alkylimidazolium salts with the alkyl substituents of butyl (bmim), dodecyl (dmim), tetradecyl (tmim), or hexadecyl (hmim) and the anions of PF6- or BF4-, which possess different melting points from room temperature for [bmim+][PF6-] to 83 °C for [hmim+][PF6-]. The electroluminescent (EL) properties and the electronic structure of the LECs were characterized by current−voltage (I−V), light intensity−voltage (L−V), and ac impedance measurements. It was found that the phase compatibility between the conjugated polymer and the ionic liquid determines the performance of the light-emitting devices, and the concentration of the ionic liquid and the ionic conductivity of the polymer blend films also play an important role. The imidazolium salts investigated in this work are...

132 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
89% related
Thin film
275.5K papers, 4.5M citations
86% related
Carbon nanotube
109K papers, 3.6M citations
86% related
Graphene
144.5K papers, 4.9M citations
86% related
Raman spectroscopy
122.6K papers, 2.8M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,167
20222,073
20211,175
20201,117
20191,030
2018966