scispace - formally typeset
Search or ask a question
Topic

Ionic conductivity

About: Ionic conductivity is a research topic. Over the lifetime, 19412 publications have been published within this topic receiving 519167 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, LiCoO2 thin films with different orientations were prepared by radio frequency (RF) magnetron sputtering, and the Li-ion chemical diffusion coefficients, DLi, were measured using cyclic voltammetry (CV), galvanostatic intermittent titration technique (GITT), potentiostatic inertion technique (PITT), and electrochemical impedance spectroscopy.

176 citations

Journal ArticleDOI
TL;DR: In this paper, high performance nanocomposite electrolytes based on tunicin whiskers were obtained, and the ionic mobilities were determined by pulsed magnetic field gradient NMR, and it was shown that the reinforcement does not affect the lithium transference number.
Abstract: Lithium-conducting nanocomposite polymer electrolytes based on high molecular weight poly(oxyethylene) (POE) were prepared from high aspect ratio cellulosic whiskers and lithium imide LiTFSI salt. The thermomechanical behavior of the resulting films was investigated by differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. The ionic conductivity and the electrochemical stability of the nanocomposite polymer electrolytes are quite consistent with the specifications of lithium batteries. The ionic mobilities were determined by pulsed magnetic field gradient NMR, and it was shown that the reinforcement does not affect the lithium transference number. High performance nanocomposite electrolytes based on tunicin whiskers were obtained. Indeed, the filler provides a high reinforcing effect, while a high level of ionic conductivity is retained with respect to unfilled polymer electrolytes.

176 citations

Journal ArticleDOI
06 Oct 2005-Langmuir
TL;DR: FT-IR spectroscopy indicated that a driving force for gelation was intermolecular hydrogen bonding between amides and that the phase transition from gel to liquid upon heating was brought about by the collapse of hydrogen bonding.
Abstract: Cyclo(l-beta-3,7-dimethyloctylasparaginyl-L-phenylalanyl) (1) and cyclo(L-beta-2-ethylhexylasparaginyl-L-phenylalanyl) (2), prepared from L-asparaginyl-L-phenylalanine methyl ester, have been found to be specialist gelators for ionic liquids. They can gel a wide variety of ionic liquids, including imizazolium, pyridinium, pyrazolidinium, piperidinium, morpholinium, and ammonium salts. The mean minimum gel concentrations (MGCs) necessary to make gels at 25 degrees C were determined for ionic liquids. The gel strength increased at a rate nearly proportional to the concentration of added gelator. The strength of the transparent gel of 1-butylpyridinium tetrafluoroborate ([C(4)py]BF(4)), prepared at a concentration of 60 g L(-1) (gelator 1/[C(4)py]BF(4)), was ca. 1500 g cm(-2). FT-IR spectroscopy indicated that a driving force for gelation was intermolecular hydrogen bonding between amides and that the phase transition from gel to liquid upon heating was brought about by the collapse of hydrogen bonding. The gels formed from ionic liquids were very thermally stable; no melting occurs up to 140 degrees C when the gels were prepared at a concentration of 70 g L(-1) (gelator/ionic liquid). The ionic conductivities of the gels were nearly the same as those of pure ionic liquids. The gelator had electrochemical stability and a wide electrochemical window. When the gels were prepared from ionic liquids containing propylene carbonate, the ionic conductivities of the resulting gels increased to levels rather higher than those of pure ionic liquids. The gelators also gelled ionic liquids containing supporting electrolytes.

176 citations

Journal ArticleDOI
TL;DR: In this article, the results of gelatin-based protonic polymeric electrolytes (SPEs) were characterized by impedance spectroscopy, X-ray diffraction, UV-vis-NIR spectrograph, and scanning electron microscopy (SEM).

175 citations

Journal ArticleDOI
05 Feb 2020
TL;DR: In this paper, the authors used a hydrogen-bond topological network as the design principle to construct an ionic gel material based on cellulose, ionic liquid, and H2O.
Abstract: Summary Design of polymeric networks with unique structural motifs can permit dynamic features, yet most existing material systems exhibit limited operational states or irreversible responsiveness. Here, we use a hydrogen-bond topological network as the design principle to construct an ionic gel material based on cellulose, ionic liquid, and H2O (designated as Cel-IL dynamic gel). The prepared Cel-IL dynamic gels exhibit tunable properties of mechanical strength, ionic conductivity, viscoelasticity, and self-healing. With limited H2O, the Cel-IL dynamic gel exhibits a bramble-like Turing-pattern microstructure with excellent adhesion, rapid self-healing, and moderate ionic conductivity features. By increasing the H2O content to 32 wt %, the microstructure switched to a dense and compact Turing pattern network, giving the gel good stretchability, robust toughness, and a high ionic conductivity. With this material, we demonstrate a flexible, transparent, designable, and biocompatible ion sensor device, which exhibits great potential for use in electronic skins and intelligent devices.

175 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
89% related
Thin film
275.5K papers, 4.5M citations
86% related
Carbon nanotube
109K papers, 3.6M citations
86% related
Graphene
144.5K papers, 4.9M citations
86% related
Raman spectroscopy
122.6K papers, 2.8M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,167
20222,073
20211,175
20201,117
20191,030
2018966