scispace - formally typeset
Search or ask a question

Showing papers on "Ionic liquid published in 2016"


Journal ArticleDOI
29 Jul 2016-Science
TL;DR: Nanostructuring tungsten diselenide nanoflakes enhances catalytic activity for carbon dioxide conversion to carbon monoxide in an ionic liquid medium and applies this catalyst in a light-harvesting artificial leaf platform that concurrently oxidized water in the absence of any external potential.
Abstract: Conversion of carbon dioxide (CO2) into fuels is an attractive solution to many energy and environmental challenges. However, the chemical inertness of CO2 renders many electrochemical and photochemical conversion processes inefficient. We report a transition metal dichalcogenide nanoarchitecture for catalytic electrochemical CO2 conversion to carbon monoxide (CO) in an ionic liquid. We found that tungsten diselenide nanoflakes show a current density of 18.95 milliamperes per square centimeter, CO faradaic efficiency of 24%, and CO formation turnover frequency of 0.28 per second at a low overpotential of 54 millivolts. We also applied this catalyst in a light-harvesting artificial leaf platform that concurrently oxidized water in the absence of any external potential.

703 citations


Journal ArticleDOI
TL;DR: This article provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.
Abstract: Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

604 citations


Journal ArticleDOI
TL;DR: The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionIC liquid crystals and particularly to ionic liquids will also be provided.
Abstract: This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions.

563 citations


Journal ArticleDOI
TL;DR: Ionic liquids and their solid-state analogues, organic ionic plastic crystals, have recently emerged as important materials for renewable energy applications as discussed by the authors, and their application as electrolytes for batteries, capacitors, photovoltaics, fuel cells and CO2 reduction.
Abstract: Ionic liquids and their solid-state analogues, organic ionic plastic crystals, have recently emerged as important materials for renewable energy applications. This Review highlights recent advances in the synthesis of these materials and their application as electrolytes for batteries, capacitors, photovoltaics, fuel cells and CO2 reduction.

477 citations


Journal ArticleDOI
TL;DR: In this article, the authors present details of recent research progress on CO2 separation membranes and membrane processes using ionic liquids (ILs) over the past few years, including supported ionic liquid membranes (SILMs), poly(ionic liquid) membranes (PILMs) and membrane absorption processes based on ILs.

401 citations


Journal ArticleDOI
TL;DR: In this paper, a tailored solid-electrolyte interphase is prepared using a variety of electrolytes based on the N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide room temperature ionic liquid containing lithium salts.
Abstract: Suppressing dendrite formation at lithium metal anodes during cycling is critical for the implementation of future lithium metal-based battery technology. Here we report that it can be achieved via the facile process of immersing the electrodes in ionic liquid electrolytes for a period of time before battery assembly. This creates a durable and lithium ion-permeable solid-electrolyte interphase that allows safe charge-discharge cycling of commercially applicable Li|electrolyte|LiFePO4 batteries for 1,000 cycles with Coulombic efficiencies >99.5%. The tailored solid-electrolyte interphase is prepared using a variety of electrolytes based on the N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide room temperature ionic liquid containing lithium salts. The formation is both time- and lithium salt-dependant, showing dynamic morphology changes, which when optimized prevent dendrite formation and consumption of electrolyte during cycling. This work illustrates that a simple, effective and industrially applicable lithium metal pretreatment process results in a commercially viable cycle life for a lithium metal battery.

352 citations


01 Jan 2016
TL;DR: The ionic liquids in synthesis is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for reading ionic liquids in synthesis. Maybe you have knowledge that, people have search numerous times for their favorite books like this ionic liquids in synthesis, but end up in infectious downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they juggled with some infectious virus inside their laptop. ionic liquids in synthesis is available in our book collection an online access to it is set as public so you can download it instantly. Our books collection hosts in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the ionic liquids in synthesis is universally compatible with any devices to read.

350 citations


Journal ArticleDOI
TL;DR: If the addition of KCl to such solutions can improve conductivity and hence jCO is investigated, Electrolytes containing KCl in combination with EMIM Cl, choline Cl, or DESs showed a two to three fold improvement in jCO in comparison to those without KCl.
Abstract: The electroreduction of CO2 to C1–C2 chemicals can be a potential strategy for utilizing CO2 as a carbon feedstock. In this work, we investigate the effect of electrolytes on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Electrolyte concentration was found to play a major role in the process for the electrolytes (KOH, KCl, and KHCO3) studied here. Several fold improvements in partial current densities of CO (jCO) were observed on moving from 0.5 M to 3.0 M electrolyte solution independent of the nature of the anion. jCO values as high as 440 mA cm−2 with an energy efficiency (EE) of ≈ 42% and 230 mA cm−2 with EE ≈ 54% were observed when using 3.0 M KOH. Electrochemical impedance spectroscopy showed that both the charge transfer resistance (Rct) and the cell resistance (Rcell) decreased on moving from a 0.5 M to a 3.0 M KOH electrolyte. Anions were found to play an important role with respect to reducing the onset potential of CO in the order OH− (−0.13 V vs. RHE) < HCO3− (−0.46 V vs. RHE) < Cl− (−0.60 V vs. RHE). A decrease in Rct upon increasing electrolyte concentration and the effect of anions on the cathode can be explained by an interplay of different interactions in the electrical double layer that can either stabilize or destabilize the rate limiting CO2˙− radical. EMIM based ionic liquids and 1 : 2 choline Cl urea based deep eutectic solvents (DESs) have been used for CO2 capture but exhibit low conductivity. Here, we investigate if the addition of KCl to such solutions can improve conductivity and hence jCO. Electrolytes containing KCl in combination with EMIM Cl, choline Cl, or DESs showed a two to three fold improvement in jCO in comparison to those without KCl. Using such mixtures can be a strategy for integrating the process of CO2 capture with CO2 conversion.

331 citations


Journal ArticleDOI
TL;DR: Ionic liquid gels provide the ability to build functionality at every level, the solid component, the ionic liquid, and any incorporated active functional agents, allowing materials to be custom designed for a vast assortment of applications as discussed by the authors.

329 citations


Journal ArticleDOI
TL;DR: A judicious assessment of the CO2 separation efficiency of different membranes is provided, and breakthroughs and key challenges in this field are highlighted.
Abstract: During the past decade, significant advances in ionic liquid-based materials for the development of CO2 separation membranes have been accomplished. This review presents a perspective on different strategies that use ionic liquid-based materials as a unique tuneable platform to design task-specific advanced materials for CO2 separation membranes. Based on compilation and analysis of the data hitherto reported, we provide a judicious assessment of the CO2 separation efficiency of different membranes, and highlight breakthroughs and key challenges in this field. In particular, configurations such as supported ionic liquid membranes, polymer/ionic liquid composite membranes, gelled ionic liquid membranes and poly(ionic liquid)-based membranes are detailed, discussed and evaluated in terms of their efficiency, which is attributed to their chemical and structural features. Finally, an integrated perspective on technology, economy and sustainability is provided.

321 citations


Journal ArticleDOI
TL;DR: Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids, as well as the carbon capture mechanisms of these site-containing liquid absorbents.
Abstract: Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid–amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

Journal ArticleDOI
TL;DR: The available data and references in this field are reviewed to summarize the applications and developments of deep eutectic solvents.
Abstract: Deep eutectic solvents, as an alternative to ionic liquids, have greener credentials than ionic liquids, and have attracted considerable attention in related chemical research. Deep eutectic solvents have attracted increasing attention in chemistry for the extraction and separation of various target compounds from natural products. This review highlights the preparation of deep eutectic solvents, unique properties of deep eutectic solvents, and synthesis of deep-eutectic-solvent-based materials. On the other hand, application in the extraction and separation of deep eutectic solvents is also included in this report. In this paper, the available data and references in this field are reviewed to summarize the applications and developments of deep eutectic solvents. Based on the development of deep eutectic solvents, an exploitation of new deep eutectic solvents and deep eutectic solvents-based materials is expected to diversify into extraction and separation.

Journal ArticleDOI
TL;DR: The evidence of spectroscopic investigations and quantum-chemical calculations confirmed the interactions between two kinds of sites in the anion and CO2 that resulted in superior CO2 capacities.
Abstract: A new strategy for multi-molar absorption of CO2 is reported based on activating a carboxylate group in amino acid ionic liquids. It was illustrated that introducing an electron-withdrawing site to amino acid anions could reduce the negative inductive effect of the amino group while simultaneously activating the carboxylate group to interact with CO2 very efficiently. An extremely high absorption capacity of CO2 (up to 1.69 mol mol−1) in aminopolycarboxylate-based amino acid ionic liquids was thus achieved. The evidence of spectroscopic investigations and quantum-chemical calculations confirmed the interactions between two kinds of sites in the anion and CO2 that resulted in superior CO2 capacities.

Journal ArticleDOI
TL;DR: Owing to the combination of all mentioned properties, the prepared polymer materials were used as solid polyelectrolytes and as binders in the elaboration of lithium-metal battery prototypes with high charge/discharge efficiency and excellent specific capacity at C/15 rate.
Abstract: Polymer electrolytes have been proposed as replacement for conventional liquid electrolytes in lithium-ion batteries (LIBs) due to their intrinsic enhanced safety. Nevertheless, the power delivery of these materials is limited by the concentration gradient of the lithium salt. Single-ion conducting polyelectrolytes represent the ideal solution since their nature prevents polarization phenomena. Herein, the preparation of a new family of single-ion conducting block copolymer polyelectrolytes via reversible addition–fragmentation chain transfer polymerization technique is reported. These copolymers comprise poly(lithium 1-[3-(methacryloyloxy)propylsulfonyl]-1-(trifluoromethylsulfonyl)imide) and poly(ethylene glycol) methyl ether methacrylate blocks. The obtained polyelectrolytes show low Tg values in the range of −61 to 0.6 °C, comparatively high ionic conductivity (up to 2.3 × 10–6 and 1.2 × 10–5 S cm–1 at 25 and 55 °C, respectively), wide electrochemical stability (up to 4.5 V versus Li+/Li), and a lithiu...

Journal ArticleDOI
TL;DR: In this paper, the role of solvents in catalysis is considered from a mechanistic approach and they focus mainly on hydrogenation reactions and cross-coupling reactions.

Journal ArticleDOI
TL;DR: A critical review is presented regarding the structural features of H- bonds in ILs and PILs, the correlation between H-bonds and the properties of ILs, and the roles of H -bonds in typical reactions.


Journal ArticleDOI
TL;DR: In this paper, a 2D early transition metal carbide (Ti3C2Tx) ionogel film was used as supercapacitor electrodes operating in 1-Ethyl-3methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) neat ionic liquid electrolyte.

Journal ArticleDOI
TL;DR: The furfural yields can be improved when the product is continuously removed along the reaction (for example, by stripping or extraction), to avoid unwanted side-reactions leading tofurfural consumption.

Journal ArticleDOI
TL;DR: The results indicated that antibacterial property studies on small molecules and homopolymers may not provide a solid basis for evaluating that in corresponding polymer membranes.
Abstract: The structure-antibacterial activity relationship between the small molecular compounds and polymers are still elusive. Here, imidazolium-type ionic liquid (IL) monomers and their corresponding poly(ionic liquids) (PILs) and poly(ionic liquid) membranes were synthesized. The effect of chemical structure, including carbon chain length of substitution at the N3 position and charge density of cations (mono- or bis-imidazolium) on the antimicrobial activities against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was investigated by determination of minimum inhibitory concentration (MIC). The antibacterial activities of both ILs and PILs were improved with the increase of the alkyl chain length and higher charge density (bis-cations) of imidazolium cations. Moreover, PILs exhibited lower MIC values relative to the IL monomers. However, the antibacterial activities of PIL membranes showed no correlation to those of their analogous small molecule IL monomers and PILs, which increased with the charge density (bis-cations) while decreasing with the increase of alkyl chain length. The results indicated that antibacterial property studies on small molecules and homopolymers may not provide a solid basis for evaluating that in corresponding polymer membranes.

Journal ArticleDOI
TL;DR: In this article, the ionic liquid driven crystallization was exploited to produce a planar perovskite solar cell with a stabilized power output of 19.5% for the first time.
Abstract: Ionic liquids can retard the perovskite crystallization with the aim to form compact films with larger and more uniformly distributed grain size. The ionic liquid driven crystallization is exploited to prepared a record planar perovskite solar cell with stabilized power output of 19.5%.

Journal ArticleDOI
TL;DR: In this paper, an amino acid-derived ionic liquid inhibitor, namely tetra-n-butyl ammonium methioninate, was synthesized and the role this inhibitor for corrosion protection of mild steel exposed to 1.0 M HCl was investigated using electrochemical, quantum and surface analysis.

Journal ArticleDOI
TL;DR: It is shown that the nanocrystalline Zn exhibits a high cycling stability even after 50 deposition/stripping cycles and this strategy of introducing an inorganic metal salt in ionic liquid electrolytes can be considered as an efficient way to obtain dendrite-free zinc.
Abstract: Metallic zinc is a promising anode material for rechargeable Zn-based batteries. However, the dendritic growth of zinc has prevented practical applications. Herein it is demonstrated that dendrite-free zinc deposits with a nanocrystalline structure can be obtained by using nickel triflate as an additive in a zinc triflate containing ionic liquid. The formation of a thin layer of Zn-Ni alloy (η- and γ-phases) on the surface and in the initial stages of deposition along with the formation of an interfacial layer on the electrode strongly affect the nucleation and growth of zinc. A well-defined and uniform nanocrystalline zinc deposit with particle sizes of about 25 nm was obtained in the presence of Ni(II) . Further, it is shown that the nanocrystalline Zn exhibits a high cycling stability even after 50 deposition/stripping cycles. This strategy of introducing an inorganic metal salt in ionic liquid electrolytes can be considered as an efficient way to obtain dendrite-free zinc.

Journal ArticleDOI
TL;DR: In this article, the effect of NaFSI salt concentration in methylpropylpyrrolidinium (C3mpyr) FSI ionic liquid (IL) on the reversible plating and dissolution of sodium metal, both on a copper electrode and in a symmetric Na/Na metal cell, was investigated.
Abstract: Ambient temperature sodium batteries hold the promise of a new generation of high energy density, low-cost energy storage technologies. Particularly challenging in sodium electrochemistry is achieving high stability at high charge/discharge rates. We report here mixtures of inorganic/organic cation fluorosulfonamide (FSI) ionic liquids that exhibit unexpectedly high Na+ transference numbers due to a structural diffusion mechanism not previously observed in this type of electrolyte. The electrolyte can therefore support high current density cycling of sodium. We investigate the effect of NaFSI salt concentration in methylpropylpyrrolidinium (C3mpyr) FSI ionic liquid (IL) on the reversible plating and dissolution of sodium metal, both on a copper electrode and in a symmetric Na/Na metal cell. NaFSI is highly soluble in the IL allowing the preparation of mixtures that contain very high Na contents, greater than 3.2 mol/kg (50 mol %) at room temperature. Despite the fact that overall ion diffusivity decreases...

Journal ArticleDOI
TL;DR: In this paper, a comprehensive overview on the recent applications of ionic liquids (IL) for the separation of various compounds, including organic compounds, mixed gases, and metal ions is given.

Journal ArticleDOI
TL;DR: Several urea derivative-based ionic liquids (UDILs) with superior thermal stability were facilely synthesized, structurally analyzed, and applied to CO2 capture and conversion under mild conditions as mentioned in this paper.

Journal ArticleDOI
TL;DR: Addition of a small amount of H2 O to an ionic liquid/acetonitrile electrolyte mixture significantly enhanced the efficiency of the electrochemical reduction of CO2 into formic acid (HCOOH) on a Pb or Sn electrode, and the efficiency was extremely high using an ionics liquid/ACetonitriles/H2 O ternary mixture.
Abstract: Highly efficient electrochemical reduction of CO2 into value-added chemicals using cheap and easily prepared electrodes is environmentally and economically compelling. The first work on the electrocatalytic reduction of CO2 in ternary electrolytes containing ionic liquid, organic solvent, and H2O is described. Addition of a small amount of H2O to an ionic liquid/acetonitrile electrolyte mixture significantly enhanced the efficiency of the electrochemical reduction of CO2 into formic acid (HCOOH) on a Pb or Sn electrode, and the efficiency was extremely high using an ionic liquid/acetonitrile/H2O ternary mixture. The partial current density for HCOOH reached 37.6 mA cm−2 at a Faradaic efficiency of 91.6 %, which is much higher than all values reported to date for this reaction, including those using homogeneous and noble metal electrocatalysts. The reasons for such high efficiency were investigated using controlled experiments.

Journal ArticleDOI
TL;DR: In this paper, Zn-1,3,5-benzenetricarboxylic acid metal-organic frameworks (Zn-BTC MOFs) were used as cathodes in electrochemical reduction of CO2 using ionic liquids (ILs) as the electrolytes.
Abstract: Highly efficient electrochemical reduction of CO2 to CH4 is of great importance, but is challenging. Herein, Zn–1,3,5-benzenetricarboxylic acid metal–organic frameworks (Zn–BTC MOFs) deposited on carbon paper (CP) were used as cathodes in electrochemical reduction of CO2 using ionic liquids (ILs) as the electrolytes, which was the first work on combination of a MOF electrode and an pure IL electrolyte in the electrochemical reduction of CO2. It was found that the efficiency of the reaction depended strongly on the morphology of the Zn-MOFs. Compared with the commonly used metal electrodes, the electrochemical reaction showed much higher selectivity to CH4 and current density, and the overpotentials for CH4 is much lower. The excellent combination of the MOF cathodes and ILs opens a way for reduction of CO2 to CH4 effectively.

Journal ArticleDOI
TL;DR: An overview of metal-organic frameworks (MOFs) supported ionic liquids can be found in this article, where the authors present an overview of the studies carried out to date on MOF-supported IL systems, and their possible applications, such as in gas absorption, catalysis, templates for synthesis of nanoporous carbons, and ionic conductors.

Journal ArticleDOI
TL;DR: In this paper, a critical perspective discusses the syntheses, applications and limitations of biobased ionic liquids synthesized from amino acids, carbohydrates, lignin and other renewable sources.
Abstract: Replacing conventional solvents by ionic liquids is often suggested as a possible route to greener industrial processes. However, ionic liquids are typically petroleum-derived. This critical perspective discusses the syntheses, applications and limitations of biobased ionic liquids synthesized from amino acids, carbohydrates, lignin and other renewable sources. The practical aspects of applying such ionic liquids in lignocellulose processing, as a reaction solvent, organocatalyst or as metal extraction medium are highlighted.